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Executive Summary 
This technical methodology outlines the supporting research, data inputs, and analytical 
methods used in a comprehensive study of climate-induced migration patterns and their 
wide-ranging effects on communities across the contiguous United States (CONUS). At 
the center of this analysis is the First Street Climate Migration Model (FS-CMM), which 
projects future population changes due to various climate hazards, including floods, 
wildfires, smoke, drought, extreme heat, and tropical cyclone winds, under different 
climate scenarios. This model produces outputs expressed as absolute population 
changes expected for each census block group, broken down by specific hazards or 
combined across all hazards, for both current and future years under given climate 
scenarios. When converted to percentages, these population change projections are used 
as inputs for a series of subsequent models, each designed to explore the ripple effects 
of climate-induced migration. Through the creation of conversion tables, or damage 
functions, these secondary models translate population shifts into percent impacts on 
sociodemographic composition, economic indicators, and property values. Other tertiary 
impacts include the effects of select employment characteristics, i.e., labor force 
composition and downstream commercial viability across sectors using a similar 
conversion table technique. This interconnected modeling approach allows for a 
comprehensive assessment of how climate-driven population changes may reshape the 
social and economic aspects of affected regions, offering a robust tool for anticipating 
and planning for the complex consequences of climate migration. These analyses 
contribute to a comprehensive picture of climate change's indirect effects on the housing 
and financial industries, complementing the broader assessment of community-level 
impacts. For a full list of variables modeled, please refer to Appendix Table 1. 
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KEY TAKEAWAYS: 

1.​ Climate Migration Model: Applies empirically derived historical relationships 
between climate hazards and population change using high-resolution climate risk 
data, historic population trends, and socioeconomic factors to adjust future 
population estimates at the census block group level from 2025 to 2055 under five 
different climate scenarios (SSP-RCPs).​
 

2.​ Demographic Change Analysis: Examines how changes in community 
sociodemographic composition are associated with population shifts, providing 
insights into potential future socioeconomic and demographic trends in areas 
experiencing climate-induced migration.​
​
 

3.​ Economic Implications: Assesses the relationships between population change and 
key economic indicators such as GDP, Housing Price Index (HPI), and 
Debt-to-Income (DTI) ratio across different geographic contexts.​
 

4.​ Commercial Implications: Evaluates how changes in sectoral labor force 
composition, driven by population shifts, may impact business outcomes including 
employment, establishment counts, payroll, revenue, and costs across major 
industry sectors.​
 

5.​ Property Value Analysis: Investigates both pre-exposure market impacts on 
property values and post-exposure effects of specific climate hazards (flood, 
wind, wildfire) on property transactions and values.​
 

6.​ Tax Revenue Implications: Estimates potential changes in property tax revenues 
resulting from climate-induced population shifts and property value changes. 
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Abbreviations 
 
ACS - American Community Survey 

ATT - Average Treatment Effect on the Treated  

BEA - Bureau of Economic Analysis 

BLS - Bureau of Labor Statistics 

CBP - County Business Patterns 

CFPB - Consumer Financial Protection Bureau 

CONUS - Contiguous United States 

DTI - Debt-to-Income 

ECN - Economic Census 

EPA - Environmental Protection Agency 

FEMA - Federal Emergency Management Agency 

FHFA - Federal Housing Finance Agency 

FS-CMM - First Street Climate Migration Model 

GAM - Generalized Additive Model 

GDP - Gross Domestic Product 

HMDA - Home Mortgage Disclosure Act 

HPI - Housing Price Index 

IDMC - Internal Displacement Monitoring Center 

IPCC - Intergovernmental Panel on Climate Change 

LASSO - Least Absolute Shrinkage and Selection Operator 

LTDB - Longitudinal Tract Database 

NAICS - North American Industry Classification System 
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NHGIS - National Historical Geographic Information System 

NOAA - National Oceanic and Atmospheric Administration 

PLSR - Partial Least Squares Regression 

PSM - Propensity Score Matching 

RPs - Return Periods 

RUC - Region-Urbanicity-Coastline 

SSP - Shared Socioeconomic Pathway 

USDA - United States Department of Agriculture 
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1. Climate Migration Model  
1.1 Executive Summary 

The development of this model relies on investigation of the impact of multiple natural 
hazards on population shifts across U.S. Census Block Groups from 2000 to 2020, with 
the primary purpose of predicting future population changes due to increasing climate 
exposure. By expanding on previous research conducted by Shu et al. (2023) at First 
Street that primarily focused on flood-induced migration, this analysis aims to provide a 
comprehensive understanding of how various climate risks will reshape population 
distributions across the United States. The study considers floods, wildfire smoke, 
droughts, wildfires, heatwaves, and cyclonic winds, each characterized by distinct 
sources, intensities, and probabilities. This multi-hazard approach allows for a more 
nuanced prediction of future migration patterns and population changes in response to 
evolving climate risks. 

The study combines historical population data with current and future climate risk 
information and future climate projections to model population trends under all five 
Shared Socioeconomic Pathway (SSP) scenarios. By incorporating high-resolution climate 
risk data for multiple return periods and severities, the analysis allows for a more complex 
investigation of how populations react to various characterizations of risk. The 
methodology includes a temporal dimension reduction process to estimate long-term 
climate hazards, propensity score matching at the state level, and Least Absolute 
Shrinkage and Selection Operator (LASSO) regression to quantify the impact of the six 
climate hazards on population change. These estimates are then used to develop future 
population projections, providing insights into how combined climate risks are likely to 
impact future population growth in local communities across the U.S. The results reveal 
varying impacts of different climate hazards on population change, with implications for 
future population distributions and community resilience planning. 

1.2 Background 

Climate migration, the movement of people in response to environmental changes or 
natural disasters caused by climate change, has become an increasingly significant area 
of research as the impacts of climate change intensify. As global temperatures rise, 
increased extreme weather events, sea level rise, and altered precipitation patterns can 
make some areas less livable by posing safety risks, damaging infrastructure, destroying 
property, disrupting local economies, and compromising access to essential resources.  
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The scale of climate-induced displacement is significant. The Internal Displacement 
Monitoring Center (IDMC, 2021) reported that in 2020 alone, nearly 1.7 million Americans 
were displaced by natural disasters, many of which were climate-related. Furthermore, 
studies by the Environmental Protection Agency (EPA, 2021) indicate that regions such as 
the Gulf Coast and California are experiencing higher rates of out-migration as residents 
seek safer and more stable environments due to issues of extreme heat, flooding, and air 
quality. 

While early studies focused primarily on international migration due to climate change 
(e.g., Myers, 2002; McLeman and Smit, 2006), recent research has shifted towards 
examining internal migration patterns within countries, particularly in the United States. A 
seminal study by Hauer (2017) projected that sea level rise alone could displace up to 13 
million Americans by 2100. This work highlighted the potential scale of climate-induced 
migration within the U.S. and sparked further research into the topic. Building on this, 
Keenan et al. (2018) introduced the concept of "climate gentrification" in Miami-Dade 
County, demonstrating how flood risk influences property values and migration patterns, 
with higher elevations becoming more desirable as flood-prone areas are increasingly 
seen as uninhabitable.  

More recently, Shu et al. (2023) provided a comprehensive analysis of flood-induced 
migration in the U.S. They found that between 2000 and 2020, flood risk at the 
neighborhood level directly impacted approximately 7.3 million residential moves. Notably, 
they identified two key patterns: "risky growth" areas where population continued to 
increase despite flood risk, and "climate abandonment areas" where 3.2 million people 
left due to flood risk and other factors. 

While flood risk has been a primary focus, other climate hazards are also influencing 
migration patterns. Fan et al. (2016) found that drought conditions in California led to 
increased out-migration, particularly among agricultural workers. Similarly, Nawrotzki et 
al. (2017) demonstrated that wildfire events in the western U.S. resulted in short-term 
population displacement and longer-term migration trends. Despite these advances, 
current U.S.-focused research on climate migration remains predominantly centered on 
flood risk, neglecting the impact of other climate hazards. This narrow focus limits our 
understanding of the full scope of climate-induced migration and its downstream impacts 
on communities across various climate hazards (IDMC, 2021). 

Our research aims to address this gap by examining the relationship between residential 
mobility patterns and increased exposure to a range of climate risks, including flooding, 
wildfires, wildfire smoke, extreme heat events, hurricane winds, and drought. We build 
upon the conceptual framework of Shu et al. (2023), which demonstrated that the 
relationship between flood risk and population change was both nonlinear and  
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confounded by the larger economic context of the local area. We extend this framework 
to multiple climate hazards to coin the First Street Climate Migration Model (FS-CMM), 
hypothesizing that similar nonlinear relationships and economic moderating effects will be 
observed across various types of climate risks. To test these hypotheses, we developed a 
series of models predicting population change from 2000 to 2020, incorporating 
exposure and risk data for multiple climate hazards. To explore the potential moderating 
effect of an area’s desirability, we also explored these relationships separately for areas 
that experienced population gain or loss. This approach allows us to disentangle the 
effects of climate risks from other factors influencing migration patterns, providing a more 
comprehensive understanding of climate-induced residential mobility across the United 
States. 

1.3 Methodology 

The FS-CMM leverages historic data from 2000 - 2020, including population, amenity and 
socioeconomic information available at the community level (block or tract), as well as 
current and future First Street climate hazard data including flood, tropical cyclone winds, 
heatwaves, wildfires, wildfire smoke, and drought across CONUS. To control for extrinsic 
factors, we developed propensity scores to match block groups that share similar amenity 
and socioeconomic profiles. We then used LASSO regression to estimate the impact of 
the six climate hazards on population change. These estimates were then used to develop 
future population projections based on the climate trends under the SSP2 scenario. This 
provides the first insight into how combined climate risks are likely to impact future 
population growth in local communities across the U.S. A flow chart visualizing the steps 
of the FS-CMM creation is presented in Figure 1.1. 
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Figure 1.1 FS-CMM Pipeline tracking input data, modeling steps, and model outputs. 

1.3.1 Data Inputs 

FS-CMM relies on population projections, socioeconomic and geographic information, 
and climate projections to model climate-induced migration patterns. Socioeconomic data 
capture household characteristics, income levels, and employment indicators, while 
geographic data include topography, land use, and proximity to water bodies. 
Socioeconomic and geographic variables were used as covariates to match block groups 
that are characteristically similar, controlling for extrinsic factors and thereby isolating 
anticipated population changes due to climate hazards. Climate projection data 
encompass historic, current, and future exposure to various climate hazards at high 
spatial resolution. 

Covariate Data 

Data used to inform the covariates in our migration model was gathered from various 
federal and proprietary data sources. Socioeconomic data were obtained from the 2018 
5-year American Community Survey (ACS) and Bureau of Economic Analysis (BEA) 
regional accounts datasets. Geographic characteristics were sourced from the USDA,  
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Lightbox, National Oceanic Atmospheric Administration (NOAA), and the UNC Global 
Rivers Database. Table 1.1 provides a detailed overview of the incorporated community 
vulnerability and risk variables.  

Table 1.1 Climate Migration Covariate Variables 

Variable Resolution Time Period Source 

Total population 2000 and 2020 Census 
Tracts 

2000 - 2020 5-year ACS 

Total housing units 2010 Census Tract 2018 5-year ACS 

Median income, 
persons aged 16 or 
older 

2010 Census Tract 2018 5-year ACS 

Total owner-occupied 
households 

2010 Census Tract 2018 5-year ACS 

Total 1-unit 
owner-occupied 
households, detached 

2010 Census Tract 2018 5-year ACS 

Total 1-unit 
owner-occupied 
households, attached 

2010 Census Tract 2018 5-year ACS 

Total 1-unit 
renter-occupied 
households, detached 

2010 Census Tract 2018 5-year ACS 

Total 1-unit 
renter-occupied 
households, attached 

2010 Census Tract 2018 5-year ACS 

Total properties with an 
active mortgage 

2010 Census Tract 2018 5-year ACS 

Percent of population 
that are single family 
home owners 

2010 Census Tract 2018 5-year ACS 

Percent of population 
that are single family 

2010 Census Tract 2018 5-year ACS 

Topography code* County 1999 ERS USDA Natural 
Amenities Scale 

Land area of a tract 2020 Census Tract 2020 Census 2010-2020 
tract crosswalk 

Water area of a tract 2020 Census Tract 2020 Census 2010-2020 
tract crosswalk 
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Variable Resolution Time Period Source 

USDA amenity rank* County 1999 ERS USDA Natural 
Amenities Scale 

Number of jobs in 
climate exposed 
industries** 

County 2001-2020 BEA Regional Economic 
Accounts 

Total number of jobs County 2001-2020 BEA Regional Economic 
Accounts 

Ratio of 
climate-exposed jobs 
to total jobs 

County 2001-2020 BEA Regional Economic 
Accounts 

Number of campsites County 2014 uscampgrounds.info 

Number of schools 2010 Census Tract 2024 Lightbox 

Number of fire stations 2010 Census Tract 2024 Lightbox 

Number of police 
stations 

2010 Census Tract 2024 Lightbox 

Number of hospitals 2010 Census Tract 2024 Lightbox 

Population density 2010 Census Tract 2018 5-year ACS 

Median home value 2010 Census Tract 2018 5-year ACS 

Number of individuals 
employed 

2010 Census Tract 2018 5-year ACS 

Number of individuals 
unemployed 

2010 Census Tract 2018 5-year ACS 

Number of individuals 
in the labor force 

2010 Census Tract 2018 5-year ACS 

Number of individuals 
not in the labor force 

2010 Census Tract 2018 5-year ACS 

Distance from the 
coast 

2020 Census Tract 2013 NOAA Coastline FIle 

Distance from the river 2020 Census Tract 2013 UNC Rivers Dataset 
*See (https://www.ers.usda.gov/data-products/natural-amenities-scale/documentation/) for description of 
topography codes and amenity rank codes. Definitions appear in the raw data in rows 9-23 and 79-88, 
respectively. 

**Climate-exposed industries include Farm proprietors employment; Farm employment; Forestry, fishing, and 
related activities; Mining, quarrying, and oil and gas extraction; Arts, entertainment, and recreation; 
Accommodation and food services 
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Climate Exposure Data 

The FS-CMM utilizes high-resolution climate exposure data as the primary treatment 
variable to estimate the proportion of the population exposed to climate impacts. The 
model incorporates three temporal dimensions of climate exposure: 

1.​ Historic exposure: Accounts for prior population sorting and operationalizes past 
experiences of climate impacts. 

2.​ Current exposure: Captures perceived risk of potential impacts as of 2022 or 2023. 

3.​ Future projections: Anticipates the scale and distribution of climate impacts 30 
years into the future (2052 or 2053), based on the SSP2-4.5 scenario. 

The FS-CMM considers six climate hazards: flood, tropical cyclone winds, wildfire smoke, 
drought, wildfires, and heatwaves. For most hazards, data are available for multiple return 
periods (RPs) and severities, allowing for a nuanced analysis of population responses to 
various risk characterizations: 

●​ Flood: Proportion of inundated properties at Census block group level for 5, 20, 
100, and 500 year RPs. 

●​ Tropical Cyclone Winds: Expected wind speeds at tract level for 2, 5, 20, 100, 200 
year RPs. 

●​ Wildfire Smoke: Number of orange+, red+, purple+, and maroon AQI days in a bad 
year at tract level. 

●​ Drought: Expected D2+ (D3, D4) weeks in a year for 2, 5, 10, 20, 100 year RPs at 
tract level. 

●​ Wildfires: Maximum burn probability at tract level. 

●​ Heatwaves: Probability of a relatively hot heatwave at tract level. 

These data are primarily sourced from First Street Foundation (FS) models, with some 
exceptions. Historic flood exposure was assessed using flood event counts from Lai et al. 
and the NOAA Storm Events Database. Drought exposure data were obtained from the 
United States Drought Monitor, as no FS-based drought model currently exists. 

The spatial resolution of each FS model output varies by peril, ranging from Census block 
group to tract level. This high-resolution data allows for a more complex investigation of 
how populations react to different characterizations of risk, including multiple sources 
(e.g., pluvial, fluvial, and coastal for flood risk) and severities. Table 1.2 provides a  

    FIRSTSTREET.ORG 



      

 

detailed overview of the incorporated climate exposure variables, including their 
resolution, time periods, and source. 

Table 1.2 Climate Migration Climate Variables 

Variable Resolution Time Period Source 

Flood Census Block Group 2022-2052 FS-FM 

Tropical Cyclone Winds Census Tract 2022-2052 FS-Wind 

Heatwaves Census Tract 2022-2052 FS-Heat 

Wildfires Census Tract 2023-2053 FS-Fire 

Wildfire Smoke Census Tract 2022-2052 FS-Air 

Drought Census Tract 2022-2052 USDM 

 

The climate exposure data is then combined with the covariate data discussed above. The 
covariate data is largely gathered at the census tract-level with 2010 Federal Information 
Processing Standards (FIPS) delineations. A 2010 to 2020 tract crosswalk method was 
employed to reconcile changes in census tract boundaries over time so that data on 
covariates could be merged with climate exposure data to produce the final input data 
used in modeling. The crosswalk method involved relating 2010 tracts to 2020 tracts 
using area coverage ratios, preserving one-to-one matches where possible and assigning 
best matches for split or merged tracts. The method results in a crosswalk of 83,776 
tracts for 2020 corresponding to 72,152 tracts from 2010, ensuring consistency with the 
CONUS count and facilitating analysis across changing geographic boundaries. Similarly,  
historic 2000 populations had to be crosswalked to 2020 FIPS boundaries, consistent 
with the 2020 FIPS codes used across our analysis. This was accomplished using the 
NHGIS 2000 to 2020 block group crosswalk obtained from: 
https://www.nhgis.org/geographic-crosswalks.  

Furthermore, tract-level population data was downscaled to the block group level in order 
to align with climate exposure data and population projections data. In the absence of 
block group-level estimates, data for census tracts or counties are expanded to apply to 
each of the corresponding block groups within them. The final input into the model is  
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organized long for each unique block group ID and wide for each of the covariate, 
climate, and population variables described below. 

Population Projection Data 

To project the future relationship between population migration and climate exposure, 
future baseline population projections along SSP scenarios are integrated from Hauer et. 
al (2019) at the block group level. Population projections are demographically driven and 
do not explicitly account for climate change impacts at a local level, therefore we 
integrate them into our model by illustrating deviations from future projections due to 
climate. This study explores the impacts along all five SSPs alongside their corresponding 
Representative Concentration Pathways (RCPs), as defined by O'Neill et al. (2014) and 
van Vuuren et al. (2011). SSP-RCPs are integrated scenarios that combine socioeconomic 
development narratives (SSPs) with greenhouse gas concentration trajectories (RCPs) to 
provide a comprehensive framework for exploring potential future climate change 
impacts, mitigation challenges, and adaptation needs across different societal and 
climatic conditions. Table 1.3 below describes the differences in these SSP-RCP climate 
scenarios in terms of their narrative and quantitative measures.  

Table 1.3 SSP-RCP Narratives and Parameters 

SSP-RCP Narrative Global Mean Temperature 
Increase by 2100 

CO2 Emissions by 
2100 

Population by 
2100 

SSP1-RCP2.6 Sustainability 1.6°C (0.9-2.3°C) Net negative 7 billion 

SSP2-RCP4.5 Middle of the Road 2.4°C (1.7-3.2°C) Reduced but not zero 9 billion 

SSP3-RCP7.0 Regional Rivalry 3.6°C (2.6-4.8°C) Continued rise 13 billion 

SSP4-RCP6.0 Inequality 2.8°C (2.0-3.7°C) Stabilized 9 billion 

SSP5-RCP8.5 Fossil-fueled Development 4.3°C (3.2-5.4°C) Continued steep rise 7 billion 

 

1.3.2 Temporal Dimension Reduction Process for Climate Hazard Data 

A single metric of long-term risk for each of the climate hazards explored in this analysis 
is calculated by incorporating the expected values across multiple return periods. This is 
particularly important for flood, wind, wildfire smoke, and drought which all have multiple 
categories or return periods associated with the models being used to operationalize 
these measures. The approach produces an expected value E(x) which is the sum of 
impact of the hazard (x) multiplied by the probability of the event, P(x), shown in Equation 
1.1. Table 1.4 denotes the climate hazard and the associated categories/return periods  
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evaluated with their equivalent probabilities. This framework ensures that low-probability, 
high-consequence events are incorporated into the developed metric, preventing the 
exclusion of events that significantly impact overall risk. 
  

                                    (Equation 1.1)              𝐸(𝑋) =  ∑ 𝑥 •  𝑃(𝑥)

Where:  

is the expected value 𝐸(𝑋) 

 is the peril-specific value 𝑥

 is the probability associated with the time-period evaluated 𝑃(𝑥)

In addition, the probability of wildfire and probability of a heatwave are directly used as 
the single measures of those events.  

Table 1.4 Periods and probabilities evaluated in creation of the expected value risk metric 

Hazard* Periods Evaluated Associated Probabilities 

Flood 5, 20, 100, 500 RP 0.2, 0.05, 0.01, 0.002 

TC Winds 2, 5, 20, 100, 200 RP 0.5, 0.2, 0.05, 0.01, 0.005 

Wildfire Smoke Orange, Red, Purple, Maroon AQI 1, 0.5, 0.33, 0.25 

Drought 2, 5, 10, 20, 100 RP 0.5, 0.2, 0.1, 0.05, 0.01 

Wildfire Burn Probability Pulled Directly from Wildfire Hazard Layer 

Extreme Heat Probability of Heat Wave Pulled Directly from Extreme Heat Hazard 
Layer 

*flood (representing the average proportion of properties inundated over time), wind (the maximum expected observed 
speed over time), smoke (the number of expected days at or above the Orange AQI level over time), and drought (the 
number of expected weeks in drought stage D2 or higher (as defined by the U.S. Drought Monitor) over time. 

1.3.3 Historical Population Change 

The dependent variable of our models is the annualized percentage block group 
population change, derived from population counts from 2000 and 2020. This data was  
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reconciled and described in Section 1.3.1. The calculation process involved a percent 
change, scaled by 5, where: 

 

                ​ (Equation 1.2) 𝑏𝑙𝑜𝑐𝑘 𝑔𝑟𝑜𝑢𝑝 𝑐ℎ𝑎𝑛𝑔𝑒 =  
(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2020
−𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2000
) 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
2000

Where:  

is the annualized percentage change 𝑏𝑙𝑜𝑐𝑘 𝑔𝑟𝑜𝑢𝑝 𝑐ℎ𝑎𝑛𝑔𝑒  

 is the population value at a census block group in 2020 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
2020

 is the population value at a census block group in 2000 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
2000

The historic block group population change is calculated as the annualized percentage 
change between 2000 and 2020, similar to the process described in Shu et. al (2023). 
The resulting historical population change can be visualized in Figure 1.2.  

 

Figure 1.2 Census block group relative population change from years 2000 to 2020 (%).  
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1.3.4 Model Components 

Propensity Score Matching 

Propensity score matching (PSM) is employed in this modeling framework to mitigate 
selection bias and establish more robust causal relationships between population change 
and peril-specific climate impacts. In this model, 31 distinct ‘treatment’ groups are 
established, each representing a specific combination of exposure metrics in relation to 
the climate perils of interest (flood, wind, smoke, drought, wildfires, and heatwaves), as 
defined in Equation 1.3. One group serves as the control, encompassing block groups 
that do not meet any of the specified exposure criteria in an individual treatment group.  

                 ​ (Equation 1.3) 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 =  { 𝑛     𝑖𝑓 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑚𝑒𝑡 ,    0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}

The matching process is performed at the state level rather than the national level. Since 
states across CONUS may exhibit significant variation in terms of demographics, policies, 
environmental factors, etc., conducting PSM at the state level can account for this 
variation more effectively by comparing treatment and control groups within the specific 
context of each state. The selected treatment thresholds are shown in Table 1.5 below. 

In this analysis, only five states had block groups that did not meet the conditions to be a 
part of at least one of the treatment groups, those being: DE, NJ, RI, MA, and NV. Since 
there was not a comparable group of control block-groups (at the state-level), we exclude 
these states only for the LASSO, meaning these block-groups will not contribute to the 
peril coefficient values.  

Table 1.5 Treatment Thresholds for PSM by Hazard 

Hazard Treatment Threshold 

Flood 
1.6% of properties inundated in the 20yr RP or 4.2% of 
properties inundated in the 100 yr RP 

Wind Observed speed of 40mph or > in the 100yr RP 

Smoke 7 days of Orange + 

Drought 29.5 or more D2+ weeks 
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Hazard Treatment Threshold 

Wildfires 0.01 probability or greater 

Heatwaves 0.54 probability or greater 

 

By matching treated and untreated individuals based on propensity scores, or the 
likelihood of receiving treatment conditional on observed covariates (Equation 1.4), PSM 
allows for the creation of comparable groups similar to a randomized controlled trial, while 
also creating a simple, comparable metric that accounts for multidimensionality. 

                             (Equation 1.4) 𝑃(𝑌 =  1|𝑋) =  1

1 + 𝑒
−(β

0
 + β

1
𝑥

1
 + β

2
𝑥

2
 + ... + β

𝑘
𝑥

𝑘
)  

Where:  

 is the probability of receiving treatment given the covariates 𝑃(𝑌 =  1|𝑋)

 are the coefficients estimated in the logistic regression β�

 are the covariates used in the matching process 𝑋�

The propensity score matching setup includes variables that could introduce bias when 
evaluating the relationship between climate hazards and population in areas that are 
characteristically different. These are variables thought to be related to climate risks and 
population change. For example, an area’s proximity to the coast which could indicate a 
higher level of flood risk but also higher desirability compared to inland areas. The model 
also considers less apparent variables which could influence the movement into higher 
risk areas. For example, urban development near the coast might have additional 
amenities which act as pull factors (ex. schools, hospitals, and police stations). The 
inclusion of variables in this analysis has been informed by literature, and various model 
tests. The covariates ultimately used in the matching process include socioeconomic 
indicators such as median income, housing statistics, employment ratios, and geographic 
features, as presented in Table 1.6.  

Table 1.6 Covariates used in the PSM matching process 

Covariate (x) 

Median Income 
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Covariate (x) 

Percent of population that are single family 

Percent of population that are single family home 
owners 

Ratio of climate-exposed jobs to total jobs 

Number of schools 

Number of hospitals 

Number of police stations 

USDA amenity rank 

Distance from the coast 

Distance from a river 

Topography code 

 

Through machine learning techniques, propensity scores were computed for each block 
group using these observed covariate characteristics. Subsequently, these individual 
block groups are paired with counterparts in the control group with similar propensity 
scores. This algorithm calculates the absolute difference between the propensity scores 
of the treatment and control groups, identifying block groups with the smallest difference 
as the most suitable ‘nearest neighbor’ match. The resulting number of block groups that 
were matched state-by-state are presented in Table 1.7. Ultimately, these are the block 
groups used within the LASSO model to inform the hazard-specific relationships later on 
in this technical documentation.  

Table 1.7 State-specific block group PSM matches 
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States # of PSM matches 

AL 4332 

AZ 3076 

AR 2108 

CA 19032 

CO 2524 

CT 840 

DC 728 

DE 0 

FL 4006 

GA 9710  

ID 256 

IL 14718 

IN 2364 

IA 4280 

KS 3224 

KY 5092 

LA 2342 

ME 1388 
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States # of PSM matches 

MD 1176 

MA 0 

MI 11288 

MN 6688 

MS 3462 

MO 6370 

MT 530 

NE 2360 

NV 0 

NH 80 

NJ 0 

NM 2062 

NY 21574 

NC 8412 

ND 812 

OH 10642 

OK 4726 

OR 286 
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States # of PSM matches 

PA 7656 

RI 0 

SC 4282 

SD 1010 

TN 4748 

TX 662 

UT 3018 

VT 600 

VA 5842 

WA 1204 

WV 2476 

WI 7122 

WY 698 

 

LASSO Regression 

The FS-CMM builds on the modeling approach described in Shu et al. (2023) by 
evaluating population changes due to climate perils beyond flooding. This analysis 
separately evaluated the relationship between each of the six climate hazards—flood, 
cyclonic winds, smoke, drought, wildfires, and heatwaves—and population change. A 
total of 199,806 matched blocks from PSM were included in the models, and further 
adjusted for nuanced social, economic, amenity, and spatial variables. These potential 
confounders were empirically identified, as described in Shu et al (2023), based on the  
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variance explained in population change. The modeling approach is expressed in 
Equation 1.5. 

 𝑏𝑙𝑜𝑐𝑘 𝑔𝑟𝑜𝑢𝑝 𝑐ℎ𝑎𝑛𝑔𝑒 =  β
0 

+  β
𝑘
𝐻𝑎𝑧𝑎𝑟𝑑

𝑖 
+  β

2
𝑆𝑜𝑐𝑖𝑎𝑙 +  β

3
𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 +  β

4
𝐴𝑚𝑒𝑛𝑖𝑡𝑖𝑒𝑠 +  β

5
𝑆𝑝𝑎𝑡𝑖𝑎𝑙 +  ϵ

(Equation 1.5) 

Where each Hazard is modeled separately: 

●​ Flood includes the expected value proportion of inundated properties at the block 
group level.  

●​ Wind includes the expected maximum observed wind speed over time.  
●​ Smoke includes expected number of days at or above the Orange AQI level over 

time.  
●​ Drought includes the percentage of the year(# of weeks) in drought stage D2+.  
●​ Wildfire includes burn probability at the block group level.  
●​ Heatwave includes the probability of a relatively hot heatwave.  

Social captures a set of variables, including population density and homes occupied by 
single families. Economic includes variables such as job opportunities, jobs tied to 
industries impacted by climate change. Amenities include an amenity rank, distances to 
natural amenities, such as proximity to coasts or rivers, and number of fire stations, police 
stations, hospitals, and campsites. Spatial is a set of variables that capture some of the 
spatially explicit interactions and movements of population settlements, such as 
longitudes and latitudes, as well as topography codes. For many of these variables, linear, 
interaction terms, and exponential variations (accounting for any non-linear relationships) 
were included in the full model and considered for selection in the final model. The model 
selection process was optimized to select variables that produced the most efficient 
model based on a LASSO approach.  

LASSO, or Least Absolute Shrinkage and Selection Operator, is a powerful regularization 
technique that performs efficient parameter estimation as well as feature selection, an 
uncommon trait of other machine learning techniques. LASSO (Equation 1.6) works by 
imposing a penalty on the absolute size of the coefficients, and effectively shrinking some 
coefficients to zero, thereby reducing overfitting and collinearity within the model. Given 
the multitude of potential model features that could influence climate migration patterns, 
ranging from environmental to socioeconomic indicators, the ability for LASSO regression 
to automatically select the most relevant features allows for a better understanding of 
peril specific impact on population change.  

                 (Equation 1.6) 𝑚𝑖𝑛 1
2𝑛

𝑖 = 1

𝑛

∑ (𝑦
𝑖
 −  β

0
 −  

𝑗 = 1

𝑝

∑ 𝑥
𝑖𝑗

β
𝑗
)

2

+  λ
𝑗 = 1

𝑝

∑ β
𝑗| |

⎧

⎨
⎩

⎫

⎬
⎭
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Where,  

-  : Minimization over the coefficients ( ). 𝑚𝑖𝑛 β
0

- : Number of observations. 𝑛

- : Number of predictor variables. 𝑝

-  : Observed value for the th observation. 𝑦
𝑖

𝑖

- : Value of the th predictor variable for the th observation. 𝑥
𝑖𝑗

𝑗 𝑖

- : Intercept term. β
0

- : Coefficients for the predictor variables. β
𝑗

- : Penalty parameter controlling the strength of regularization and amount of shrinkage λ
applied to the coefficients. 

First, we define the dependent variable and the matrix of possible independent variables. 
In order to assess the model’s performance and determine the optimal value of lambda 
(λ), or the regularization parameter, we use a k-fold cross validation. The process 
involves partitioning the sample into approximately equal ‘folds’ to undergo a 
training-validation process which calculates the mean squared error at each ‘fold’ 
iteration. This helps in selecting the optimal lambda value that minimizes the validation 
error, mitigating issues such as overfitting (or underfitting) the model. The process is run 
through R, and results in a sparser model where only the most relevant features, those 
with non-zero coefficients are retained.  

The LASSO model process was operated separately for each climate peril with the model 
matrix in R programming taking this form:  

model.matrix(~ climate_hazardi +pop_density + med_inc + sfh_tot + amenity_rank +  
jobs_ratio + top_code + schools + tied_jobs + camps_count + fire_stations + 
police_stations + hospitals + labor_force + dist_coast + dist_river + noaa_cnt + 
hist_speed) 

Where i is each of the six climate hazards modeled separately 

The full model was run, and then ran separately for areas that historically gained or lost 
population to account for desirability, which may overshadow changes due to climate risk 
(like that observed in Shu et. al (2023)). Climate hazards that were retained in either the  
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full model or the model restricted to areas that historically lost population are presented in 
Table 1.8. 

Table 1.8 Retainment of each individual Climate Hazard in the Full Model or Loss Model 
(including only areas that lost population) 

Hazard Model Selection 

Flood Full 

Tropical Cyclone Winds Loss 

Smoke Full 

Drought Loss 

Heatwave Loss 

Wildfire Loss 

 

Climate-adjusted Population Projections 

Forecasting small area and subnational populations plays a vital role in comprehending 
enduring demographic shifts, and furthering our understanding of how population 
exposure to adverse natural events will change over time. Population projections have 
served as a valuable tool within both physical and social sciences to understand 
demographic transformations, strategize for future needs, and offer decision-making 
insights across a diverse number of contexts. While research typically works to estimate 
population projections at the national level, the escalating interest in granular 
demographic analyses, particularly in the context of climate change, underscores the 
significance of high-resolution, subnational forecasts. 

Population projections are available decadal at the block group level along all five SSP 
curves, as described in Section 1.3.1. The process for calculating these population 
estimates are described in Hauer et. al (2019), but a summary is provided here for 
context. County-level population projections by age, sex, and race in five-year intervals 
for the period 2020–2100 for all U.S. counties. Using historic U.S. census data in 
temporally rectified county boundaries and race groups for the period 1990–2015,  
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cohort-change ratios (CCRs) and cohort-change differences (CCDs) were calculated for 
eighteen five-year age groups (0–85+ ), two sex groups (Male and Female), and four race 
groups (White NH, Black NH, Other NH, and Hispanic) for all U.S counties.These CCRs 
and CCDs were then projected using ARIMA models as inputs into a Leslie matrix 
population projection models and controlled to each SSP.  

Hauer et. al (2019) calculated population projections at the 2010 vintage, or the 
delineation of the block groups for demographic and statistical purposes in 2010. The 
peril and covariate data we use in this analysis are in a 2020 vintage. For this reason, the 
NHGIS 2010 to 2020 block group crosswalk was used, which allows us to attribute 2010 
block group boundaries to 2020 census boundaries based on predefined weights. 
Boundaries tend to change over time due to population growth, urban development, or 
other administrative adjustments.  

Since 2020 migration and population patterns have been observed, the Shared 
Socioeconomic Pathway curves that delineated five varying population projections in 
2020 are out-of-date. In order to correct for observed population counts in 2020, each 
SSP curve has been updated to include the difference between the historically observed 
count in 2020, and the SSP specific projection. 

The residual (or error) at each block group  in each Shared Socioeconomic Pathway 
(SSP) scenario  in the year 2020 is given by Equation 1.7. 

 

                                         (Equation 1.7) 𝑅
𝑖𝑗

=  𝑂
𝑖𝑗

−  𝑃
𝑖𝑗

 

Where: 

 represents the residual or error,  𝑅
𝑖𝑗

 denotes the observed value at block group  in SSP scenario  in the year 2020,  𝑂
𝑖𝑗

𝑖 𝑗

 denotes the projected (or predicted) value at block group  in SSP scenario  in the year 𝑃
𝑖𝑗

𝑖 𝑗

2020. 

In this equation,  captures the difference between the observed and projected  𝑅
𝑖𝑗

𝑂
𝑖𝑗

𝑃
𝑖𝑗

values for each block group within each SSP scenario specifically for the year 2020. The 
projected population at each block group  in each Shared Socioeconomic Pathway (SSP) 𝑖
scenario  and in each decade  is adjusted for residuals as follows: 𝑗 𝑡
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                                         (Equation 1.8) 𝑃
𝑖𝑗𝑡

 = 𝑃
𝑖𝑗

 + 𝑅
𝑖𝑗

  

Where: 

 denotes the projected population at block group  in SSP scenario  and decade , 𝑃
𝑖𝑗𝑡

𝑖 𝑗 𝑡 

 represents the residual or error for block group  in SSP scenario , 𝑅
𝑖𝑗

 𝑖 𝑗

The residual  is obtained from the equation  , where  is the observed 𝑅
𝑖𝑗

 𝑅
𝑖𝑗

=  𝑂
𝑖𝑗

−  𝑃
𝑖𝑗

𝑂
𝑖𝑗

population and  is the projected population for block group  in SSP scenario  in the 𝑃
𝑖𝑗

𝑖 𝑗

specific year (e.g., year 2030). 

This adjustment accounts for discrepancies between observed and projected population 
values, ensuring more accurate projections inclusive of observed census data. 

This work builds on Shu et. al (2023) to incorporate climate adjustments to 5 more climate 
perils in addition to flood. We modify population projections based on anticipated 
changes due to climate exposures. To do this, we apply the coefficients for the peril 
exposure variables to the future (2053) peril layer projections assuming operationally 
linear increases between current and future climate projections and that this gradual 
increase in exposure will be realized through growth rates. The coefficients for the 
relationship between climate variables and block group growth rates may be applied 
through the integration of these relationships. Where initially the future population 
projections are derived as age-sex-race adjusted demographic estimates along the SSP 
trajectories. 

 

​ ​ (Equation 1.9) 𝑓𝑢𝑡𝑢𝑟𝑒 𝑔𝑟𝑜𝑤𝑡ℎ
𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

 (𝑎𝑛𝑛𝑢𝑎𝑙) =  𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠

 

The future projections correcting for climate exposure (i.e. integrating the climate 
consequence) may be similarly thought of as the contribution of and relationship between 
peril exposure metrics and demographic indicators, as defined in Equation 1.10. 

 

​ 𝑓𝑢𝑡𝑢𝑟𝑒 𝑔𝑟𝑜𝑤𝑡ℎ
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

 (𝑎𝑛𝑛𝑢𝑎𝑙) =  𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 +  𝑐𝑙𝑖𝑚𝑎𝑡𝑒 𝑖𝑚𝑝𝑎𝑐𝑡

(Equation 1.10) 
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Where climate impact: 

   (Equation 1.11) 𝐶𝑙𝑖𝑚𝑎𝑡𝑒 𝐼𝑚𝑝𝑎𝑐𝑡
𝑦𝑒𝑎𝑟,𝑆𝑆𝑃 

=  
𝑖 = 1

𝑛

∑ (𝐻𝑎𝑧𝑎𝑟𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
𝑘

× 𝐻𝑎𝑧𝑎𝑟𝑑 𝑉𝑎𝑙𝑢𝑒
𝑦𝑒𝑎𝑟, 𝑆𝑆𝑃, 𝑘

)

 

Projected future growth could also be expressed as:  

​ ​ ​          (Equation 1.12) 𝑓𝑢𝑡𝑢𝑟𝑒 𝑔𝑟𝑜𝑤𝑡ℎ
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑

(𝑎𝑛𝑛𝑢𝑎𝑙) =  
𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑜𝑝

𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑
− 𝑝𝑜𝑝

𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝑝𝑜𝑝
𝑝𝑟𝑒𝑠𝑒𝑛𝑡

 

Where, when combined the future population projections can be expressed as: 

 𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑜𝑝
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 

=  (𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 +  𝐶𝑙𝑖𝑚𝑎𝑡𝑒 𝐼𝑚𝑝𝑎𝑐𝑡
𝑦𝑒𝑎𝑟,𝑆𝑆𝑃 

) 𝑥 𝑝𝑜𝑝
𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

+ 𝑝𝑜𝑝
𝑝𝑟𝑒𝑠𝑒𝑛𝑡

(Equation 1.13) 

Peril-annualization 

This methodology entails leveraging individual peril data captured at two distinct temporal 
points: the present and thirty years into the future. These points, described above, are the 
expected value and probability metrics used in the LASSO analysis to generate the 
coefficients, capturing the impact of each hazard on population change. We employ an 
annualization technique to interpolate these points to generate a dataset with 30 
individual years worth of peril data. In this way, we are creating a yearly expected value 
metric that describes a long-term average at a point within our temporal scope for flood, 
smoke, wind, and drought, as well as the average probabilities for wildfire risk and 
heatwaves.  

This model adjusts population projections to specific Shared Socioeconomic Pathways 
(SSPs) at the block-group level and incorporates climate effects. This adjustment may 
lead to a national population decrease in our forecasts over time as all of the climate 
impacts in this analysis are deemed to be negative disamenities. However, the “lost” 
population should be expected to move to other areas. To ensure consistency in 
population levels across different time periods, we calibrate the climate-adjusted 
projections. This helps us focus exclusively on capturing population movements 
influenced by climate effects, while minimizing interference from external factors. 
Conceptually, our approach is to rely on the population projection underlying drivers in 
the SSP scenarios,  which directly integrate the larger social, economic, and political 
context and demographic makeup of the population (Hauer, 2019). Using well established 
population forecasting techniques, these estimates were produced so that they are able  
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to allocate population to areas with strong “pull-factors” and a demographic profile 
associated with growing population. 

Operationally, the process involves iterating through each SSP in each decade to compute 
baseline and climate-adjusted populations. The difference indicates the national 
population decline for each decade. For block groups that experience population growth 
in modeled decades—driven, for instance, by SSP trends outweighing climate-related 
losses—they receive a portion of climate migrant populations, limited to their historical 
population proportion. This ensures that populations are redistributed in a manner 
consistent with their current size and the expectations forecasted in the SSP projections. 
Essentially, this research relies on the expertise provided by Hauer (2019) in order to 
understand what those parameters are. The redistribution process is formally stated in 
Equation 1.14. 

 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
𝑏𝑔,𝑦𝑒𝑎𝑟,𝑆𝑆𝑃

 =  𝑁𝐶𝐸
𝑦𝑒𝑎𝑟,𝑆𝑆𝑃| | ×  𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑏𝑔

(Equation 1.14) 

Where: 

: National climate effect on population for a specific year and SSP scenario 𝑁𝐶𝐸
𝑦𝑒𝑎𝑟,𝑆𝑆𝑃

: Historical proportion of population for the block 𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑏𝑔

group 

 

This process is utilized to adjust current and future SSP projections in a 30-year outlook 
as such below:  

 

 𝑓𝑢𝑡𝑢𝑟𝑒 𝑝𝑜𝑝
𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 

=  (𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 +  𝐶𝑙𝑖𝑚𝑎𝑡𝑒 𝐼𝑚𝑝𝑎𝑐𝑡) 𝑥 𝑝𝑜𝑝
𝑝𝑟𝑒𝑠𝑒𝑛𝑡 

+ 𝑝𝑜𝑝
𝑝𝑟𝑒𝑠𝑒𝑛𝑡

+ 𝑝𝑜𝑝
𝑟𝑒𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

 

While population projections are at the block group level along all 5 SSPs, currently peril 
data is mostly along SSP2 only. In this way, we are only producing climate adjustments in 
conjunction with a ‘middle-of-the-road’ scenario, which includes a slowing population and 
moderate economic development and moderate increases to energy uses and 
greenhouse gas emissions.  

The retrospective analysis and prospective correction of population projections along the 
SSP2 trajectory give us the ability to take observable associations between climate risk  
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and exposure and integrate a high resolution climate signal into current SSP projections. 
Most importantly, we are interested in how areas that have been classified as highly 
exposed to a given climate peril are projected to change in population relative to areas 
that have been classified as not being highly exposed. 

1.4 Results 

Each of the climate hazards were shown to have a negative impact on population 
estimates in either the full or the restricted models including areas with population loss. 
First, the impact of climate risk for both flood and wildfire smoke were negatively related 
to population change in the full models (controlling for all other variables in the model). 
However, for wildfire, tropical cyclone winds, extreme heat, and drought the full models 
showed no negative effect of climate risk on population change. For each of these 
hazards, models restricted to areas with population loss vs gain were evaluated to see if 
the larger context of the market played overshadowed the impact of climate. In all cases 
the models showed that in communities with strong growth in population over the 20 year 
study period, there was no negative effect of climate risk on population change. However, 
for communities that were seeing negative population change, there was a statistically 
significant negative effect of climate risk across all 4 of these hazards. These results 
indicate an amplification effect of climate risk as a “push factor” in areas that already 
have a number of other factors pushing people out of the communities. The significant 
negative coefficients related to the impact of climate risk on observed historic population 
change patterns are presented in Table 1.9.  

Table 1.9 Coefficient estimates from LASSO regression for the overall model, and for 
separate models including either areas with population gain or population loss 

Climate Hazard Coefficient 
Estimate  

(all block groups) 

Coefficient Estimate  

(gaining block 
groups) 

Coefficient Estimate  

(losing block 
groups) 

Flood -41.74868 NA NA 

Wildfire Smoke -0.02592867 NA NA 

Wildfire No Effect No Effect -2.198713 

TC Winds No Effect No Effect -0.0002656105 
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Extreme Heat No Effect No Effect -0.4162961 

Drought No Effect No Effect -1.036107 

Following the identification of the historic relationships between each of the climate 
hazards and historic population change, these coefficients applied to future population 
projections along all 5 SSPs out to the year 2055. The population projections were created 
through a series of demographic and statistical techniques aimed at distributing the 
global scale social, economic, and political relationships along the 5 scenarios, to a higher 
resolution within the US context.  For more information on both the techniques and 
framework for this down scaling, see the work by Hauer (2019) which details this process. 
Climate corrections to future population projections were produced by applying 
coefficients identified in the model results (Table 1.9) to block group population 
projections presented by Hauer (2019), and adjusted for population reallocation using the 
proposed downscaling framework. In order to integrate the climate correction coefficients 
identified in the historic models into future population projections, expectations of climate 
risk were estimated at the block group level over a 30 year horizon (to 2055). 

Once future risk expectations were computed, the application of the climate correction 
coefficients (from Table 1.9) to the downscaled SSP scenario projections would allow for 
an estimation of the impact of climate risk on population over that same period. A 
summary of the number of CONUS block groups that are negatively impacted to some 
level of risk by each climate hazard are shown in Table 1.10. The results in the table show 
that flood risk overwhelmingly has the highest percentage future impact on the total 
number of block groups at 82.6%. This is followed by heatwaves at 47.4% coverage, 
drought at 46.6% coverage, wildfire at 32.7% coverage, wildfire smoke at 21.7% 
coverage, and tropical cyclone winds at 11.1% coverage. 

Table 1.10 Count and Percentage of Block Groups with a Non-Zero Negative Effect by 
Climate Hazard 

Climate Hazard Block Groups Impacted by Timing (238,193 in total) 

 Currently 2025  - 2035 2035 - 2045 2045 - 2055 

Flood  193,961 

(81.4%) 

194,815 

(81.8%) 

195,878 

(82.2%) 

196,680 

(82.6%) 
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Tropical 
Cyclone Winds  

20,136 

(8.5%) 

21,936 

(9.2%) 

24,948 

(10.5%) 

26,556 

(11.1%) 

Wildfire Smoke 46,941 

(19.7%) 

48,710 

(20.4%) 

49,301 

 (20.7%) 

51,684 

(21.7%) 

Drought 83,772 

(35.2%) 

92,386 

 (38.8%) 

104,887 

(44.0%) 

111,007 

(46.6%) 

Extreme Heat 85,777 

(36.0%) 

93,936 

 (39.4%) 

106,693 

 (44.8%) 

112,896 

 (47.4%) 

Wildfire 47,368 

 (19.9%) 

66,551 

 (27.9%) 

74,237 

 (31.2%) 

77,952 

 (32.7%) 

When exploring the spatial distribution of these losses, we see that the areas with the 
largest expected absolute person losses are in the major metropolitan areas of the 
country. From a very practical standpoint, this makes sense given that these represent 
large population centers with the capacity to lose persons at the rate reflected in the 
model. That being said, the patterns in the figure also underscore the critical intersection 
between environmental vulnerabilities and demographic trends. In particular, smaller 
communities grappling with a convergence of climate hazards like tropical cyclones, 
floods, wildfires, are expected to encounter more significant challenges in sustaining 
population growth and even maintaining current population levels. Figure 1.3 showcases 
the counties across CONUS and their associated population losses due to climate hazards 
in the next 30 years. Los Angeles and Miami-Dade counties which are riddled with 
exposure to almost all of the climate hazards in some way are those that can expect the 
greatest declines in population due to climate.  In contrast, regions with lower exposure to 
these hazards may be better positioned to mitigate demographic declines and potentially 
foster more stable population dynamics, like counties such as Eureka, NV, Catron, NM, 
and Harding, SD to name a few. However, it is also important to point out that the map can 
be misleading in that the future projections of population growth often outpace the losses 
projected in the map. In order to fully understand the impact on community growth, 
population projections must be coupled with these negative impacts. 
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Figure 1.3 illustrates the intersection of projected population trends under SSP2 with the 
integrated climate correction factor identified from the historic model presented above. 
This represents a more holistic approach to understanding the impact climate might have 
on future population levels as it fully integrates expectations around the social, economic, 
and political amenities of an area as competing drivers of population change due to 
climate risk. In many places with high levels of climate risk, these amenities will simply 
outweigh the disamenity of climate risk. This relationship should be understood as a 
balance in which fast growing communities, with large amounts of capital, are able to 
allocate resources to adapt to the growing climate risk and to continue to attract 
businesses and populations as a result. While there is no doubt that there is a drag on the 
growth due to climate risk in these areas, that drag is overwhelmed by the influx of people 
and capital and represents a form of “risky growth”. 

 

Figure 1.3 County level projected population change resulting from the combined climate 
effect over the next 30 years.  

On the other hand, areas without these levels of capital are generally already seeing 
slowing growth rates, or even negative population change, and are more susceptible to  

    FIRSTSTREET.ORG 



      

 

the negative impacts of climate risk. These areas make up two distinct types of 
communities, one in which climate abandonment is simply another factor in the general 
abandonment of the community and one in which there continues to be risky growth in 
the area but at a rate slow enough to lead to a tipping point at which the community will 
become a net population loser in the future. The former group represents many areas in 
the Midwest and Northeast where out migration due to other factors is helping to drive the 
amplification of the climate effect. More interesting are the areas that continue to grow in 
the near future, but do not have enough forecasted growth due to other factors to keep 
up with the negative impact of climate risk. These are the areas that can be projected to 
become climate abandonment areas in the next 30 years. 

 

Figure 1.4 County level projected population change (%) resulting from the combined 
climate effect, socioeconomic impact under SSP2, and population redistribution due to 
climate migration over the next 30 years. 

While the county level map in Figure 1.4 highlights some of the aggregate patterns we 
are seeing in the data, it is hard to discern distinct patterns at the national scale. In 
order to fully understand the insights that can be gained from coupling the high  
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resolution climate risk information with the high resolution population projections, 
Figure 1.5 represents a focused investigation on three distinct neighborhoods within 
Miami-Dade County. For context, Figure 1.4 showed that Miami-Dade County would 
be an overall grower in population over the next 30 years, but if you disaggregate the 
data and view specific neighborhoods, one can see that all 3 of the neighborhood 
types mentioned in the previous paragraph exist within the county.  

To illustrate this, Figure 1.5 reports the population change forecasts for three specific 
census block groups which model the three trends of risky growth, declining growth 
with a quantifiable tipping point, and ongoing climate abandonment. In the figure you 
can see the three distinct trends within the county where block group 
(120860056001), in the Flagler neighborhood, representing an area of continued 
growth due to the positive population forecast and the relatively weak negative impact 
of climate in the area. On the other hand, the Sunny Isles Beach neighborhood 
(120860001071) represents an interesting case of an area which is currently growing 
due to the vast amount of amenities in the area (including being located directly on 
the coast) but that is expected to hit a tipping point in the next 2 decades in which the 
negative impact of climate will contribute to a decline in population. Finally, the 
climate abandonment area is located in the larger Doral neighborhood 
(120860090402), which has seen both out migration in the historic dataset 
(2000-2020) and is expected to continue to see out migration due, in part, to the 
climate risk in the area. The results presented in the figure highlight the need to 
investigate the process of population change and the impact of climate on a more 
granular level than the literature currently covers (which is generally at a county 
level). 
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Figure 1.5 Population Projection trends in Miami-Dade county neighborhoods for areas of 
continual growth (blue), risky growth with tipping point (gray), and climate abandonment 
(red). 

The variation in the results are presented across all of Miami-Dade County where the 
negative impacts of climate are represented in the left-hand figure and the location of the 
3 archetypes presented in Figure 1.5 are presented in the right-hand map of Figure 1.6. 
The results show that the largest negative impacts of climate risk are located along the 
coastal areas of Miami Beach (including the areas to the far northeast of the county), 
areas on mainland Miami-Dade along the coast (in the southeast part of the county), and 
areas along the everglades in the northwestern part of the county. These patterns 
underscore the impact of flood exposure in this area as these are also the communities 
with the largest flood levels in the underlying climate risk models. In the right-hand map, it 
is clear that the inland part of the county has a high concentration of areas that are 
growing and continuing to grow, even with the higher than average risk across the county. 
In contrast the coastal part of the county has a high proportion of areas that have lost 
population historically and are projected to continue to lose population into the future, in 
part due to the high level of climate risk. Finally, and perhaps the most interesting group 
exists in the coastal adjacent part of the county where we can see a concentration of 
places that are currently growing, but are expected to reach a tipping point in the next 30 
years which will result in declining populations, in part due to the high level of climate risk 
in the area. 
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Figure 1.6 Miami-Dade county block groups’ combined climate effect and projected 
population trend designation (risky growth, tipping point, or climate abandonment area). 

2. Derivative Impacts from Population 
Change 
The population projections developed from the First Street Climate Migration Model 
(FS-CMM) were combined with estimates of changes in sociodemographic composition, 
economic indicators, commercial viability, and residential property values, effectively 
predicting the downstream socioeconomic and housing consequences of climate 
migration across communities in the continental U.S. (CONUS). Figure 2.1 below illustrates 
how FS-CMM outputs were used to derive future impacts from population change via 
conversion tables built from historical relationships. Appendix Table 1 presents a list of all 
variables modeled over the course of this project. 

“Conversion tables” refer to the way we structure our outputs to feed into a series of 
downstream consequences of climate migration using population migration inputs to 
produce relevant outputs. These tables were derived from historical relationships using  
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Generalized Additive Modeling (GAM) described in Section 2.2. Geographic context was 
explicitly incorporated into the models by separately evaluating relationships to create 
conversion tables based on region, urbanicity, and proximity to coastlines, as described in 
Section 2.1. 

For a given relationship, historical change in the explanatory variable was regressed on 
historical change in the outcome variable to predict future changes in the outcome 
variable as changes in the explanatory variable are observed. In the context of the 
demographic change, economic implications, commercial implications, and property 
value change models, historical population change served as the explanatory variable, 
producing conversion tables with inputs along a range of population changes and 
resulting outcome changes for each variable modeled. To use the conversion tables 
developed, population change inputs were derived from the FS-CMM as percent change 
in the population at the block group level by dividing the difference between the climate 
adjusted populations from the relevant base population for a given climate scenario or 
timeframe by the base population. Expected percent changes in the outcome variables to 
these conversion tables were linked along changes in population suggested by FS-CMM 
outputs, allowing future predictions about the change in socioeconomic and housing 
factors to vary by specific climate hazard or in aggregate and by climate scenario. 

The following sections of this technical document detail the development of conversion 
tables for each downstream consequence: 3. Demographic change, 4. Economic 
implications, 5. Commercial implications, and 6. Property value change. 
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2.1 Region-Urban-Coastline Continuum 

To explore the relationships modeled by geographic context, we divided tracts and their 
corresponding counties into Region-Urbanicity-Coastline (RUC) categories, capturing 
amenity profiles of geographies across the country based on three dimensions. This 
approach is grounded in research demonstrating that migration patterns are not uniformly 
distributed across geographic locations and demographic groups, but depend on various 
factors such as urbanicity, amenity profile, and regional characteristics (Johnson et al., 
2005; Johnson and Winkler, 2015; Johnson et al., 2013; Rappaport, 2007). The three 
dimensions are: 

1.​ Macro region (Northeast, South, Midwest, and West) 

2.​ Urbanicity (metropolitan and nonmetropolitan) using Rural-Urban Continuum 
Codes (RUCC) for counties in 2013 (USDA, 2024). In this categorization, counties 
that are identified as part of a Metropolitan Statistical Area (MSA) are categorized 
as “metropolitan” and all other counties are classified as “nonmetropolitan” (see 
Table 2.1). 

3.​ Coastal proximity (coastal and non-coastal) for metropolitan areas, based on 
whether the county border touches the coastline. There were a limited number of 
non-metropolitan tracts on the coastline (<1%).  

These three dimensions constitute 11 distinct categories that encompass the diverse 
geographic contexts across the United States (Figure 1.2).  

Table 2.1. Two levels of urbanicity defined using USDA Rural-Urban Continuum Codes for 
counties in 2013.  

Urbanicity RUCC Code Description 

Metropolitan 1 Counties in metro areas of 1 million population or more 

Metropolitan 2 Counties in metro areas of 250,000 to 1 million population 

Metropolitan 3 Counties in metro areas of fewer than 250,000 population 

Non-Metropolitan 4 Urban population of 20,000 or more, adjacent to a metro area 

Non-Metropolitan 5 Urban population of 20,000 or more, not adjacent to a metro area 

Non-Metropolitan 6 Urban population of 2,500 to 19,999, adjacent to a metro area 
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Urbanicity RUCC Code Description 

Non-Metropolitan 7 Urban population of 2,500 to 19,999, not adjacent to a metro area 

Non-Metropolitan 8 Completely rural or less than 2,500 urban population, adjacent to a metro area 

Non-Metropolitan 9 Completely rural or less than 2,500 urban population, not adjacent to a metro area 

 

 

Figure 1.2 Map of the contiguous U.S. colored by Region-Urbanicity-Coastline categories. 
Coastline status was distinguished for metropolitan areas only, as the number of 
non-metropolitan tracts on the coastline were limited. There are no coastal counties in the 
Midwest.  

The importance of these geographic distinctions is well-established in migration research. 
Studies have shown that migration flows of certain demographic groups vary substantially 
between metropolitan and non-metropolitan areas, leading to distinct demographic 
compositions of populations in these areas (Johnson & Lichter, 2023; Ambinakudige & 
Parisi, 2017). In most cases, rural-to-urban migration has historically contributed to the 
growth and diversification of cities while also exacerbating population decline and aging 
in many rural communities (Johnson & Lichter, 2019). At the same time, metro vs. 
non-metro migration patterns have been found to vary regionally across the U.S. with the 
Northeast experiencing more dramatic shifts in population (Johnson & Cromartie, 2006;  
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Rickman & Wang, 2017). Similarly, natural amenities, such as mild climates and coastal 
proximity, have emerged as important drivers of migration among particular demographic 
groups (McGranahan, 1999; Gosnell & Abrams, 2011). For example, amenity-driven 
migration has led to rapid population growth in some rural areas, such as the Rocky 
Mountain West and the Upper Great Lakes, while other rural regions have continued to 
experience population decline (Johnson & Beale, 2002). 

At the same time, exposure to climate change varies along RUC divides. Most directly, all 
parts of the country are exposed to some type of climate hazard, which varies regionally 
based on the environmental conditions present in the area (First Street, 2023a; NOAA, 
2024). In terms of flooding alone, FEMA (2024) has made the point that 99% of the over 
3,000 counties in the US have recorded a significant flood event between the years of 
1996 and 2022. More specifically, the coastal areas of the Gulf and Atlantic are 
particularly susceptible to tropical cyclones and storm surge, the Midwest and Northeast 
are seeing an increasing frequency of extreme precipitation (First Street, 2023b), the 
middle of the country is particularly susceptible to extreme heat exposure (Wilson et al, 
2023), and the Western half of the country has seen a dramatic increase in exposure to 
wildfires (Kearns et al, 2022). Beyond exposure, the impacts of climate change are also 
expected to impact metropolitan areas differently than nonmetropolitan areas (Schifano et 
al, 2013; Hartfield et al, 2014). Given this variation in both exposure and responses to 
climate risk, our modeling framework along these RUC boundaries assumes that 
socioeconomic and housing responses to population change differ across the regional, 
urban, and coastal categories we define. 

2.2 Generalized Additive Modeling 

Generalized Additive Models (GAMs) are a flexible class of statistical models that allow for 
non-linear relationships between predictor and response variables, making them 
particularly useful for capturing complex patterns in the social sciences. GAMs have been 
successfully applied in various social science contexts, offering flexibility in modeling 
complex, non-linear relationships. For instance, Beck and Jackman (1998) employed 
GAMs to examine the relationship between democracy and economic development, 
revealing complex, non-linear patterns that challenge simple linear interpretations. 

Across most of our analyses described in this document, we employ bivariate GAMs to 
evaluate the impact of population growth or decline on various outcome variables 
independently across different RUC classifications. This approach allows us to capture 
potential interaction effects between dimensions of region, urbanicity, and coastal 
location. Specifically, we model these relationships consistently across demographic 
change, economic implications, and property value using a cubic spline smoothing 
function limited to three knots. This results in fitting each relationship with a piecewise  
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cubic polynomial consisting of at most four cubic polynomial segments. By doing so, we 
allow for non-linear relationships between the predictor and response variables, enabling 
a more flexible and nuanced understanding of these relationships compared to traditional 
linear models. 

Population change is always modeled as a percentage growth factor. Outcome changes 
are modeled either as percentage changes for variables that are percentage-based, or as 
differences over time for variables measured in dollars or counts. Subsequent sections 
provide the formulas used to estimate these growth factors. GAM models used across this 
analysis may be expressed: 

 

      (Equation 2.1) 𝑂𝑢𝑡𝑐𝑜𝑚𝑒 𝐶ℎ𝑎𝑛𝑔𝑒 (𝑖, 𝑗) =  𝑓(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒(𝑗)) +  ε

where: 

●​ Outcome change (i,j) is the change in the outcome variable of interest i from 2000 
to 2020 in RUC classification j 

●​ f() represents a cubic spline smoothing function with a maximum of three knots 

●​ Population Growth Rate(j) is the population change from 2000 to 2020 in RUC 
classification j, expressed as a percentage  

●​ ε is the error term 

Predictions about the outcome of interest from changes in population are made using the 
fitted GAM model for each relationship. The values of population change are expanded 
into a sequence of values within the 90% central range of each variable separated into 
0.05 percentage point steps. The predicted outcomes are mapped to each of the 
population change values to estimate the predicted value of the outcomes along with their 
standard errors and resulting 95% confidence intervals. The goal of formatting the results 
in this way is to produce a conversion table that translates changes in population into 
relevant outcomes across for each RUC. Importantly, the limitation to 3 knots in the GAM 
model serves a dual purpose: it not only captures non-linear relationships but also 
ensures that the model isn't overfitting the data. This balance between flexibility and 
complexity reduction allows for more reliable predictions by avoiding the capture of noise 
or idiosyncrasies specific to the historical data used, thus improving the model's 
generalizability to new, unseen data points within each RUC. 
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2.2.1 GAMs Assumptions and Limitations 

While GAMs offer significant flexibility in modeling non-linear relationships, it's crucial to 
understand their underlying assumptions and potential limitations. These considerations 
inform both the interpretation of results and the scope of conclusions that can be drawn 
from the analysis. The key assumptions and limitations of the GAM approach used in this 
study include: 

●​ Smoothness: GAMs assume that the underlying relationship between the predictor 
and response variables is smooth. This may not always hold in real-world 
scenarios, especially when abrupt changes or thresholds exist. 

●​ Homoscedasticity: GAMs assume constant variance of residuals across the range 
of predictors. Violations of this assumption may lead to unreliable confidence 
intervals. 

●​ Knot Selection: The choice of the number and placement of knots can influence 
the model's flexibility and fit. The use of three knots in this study is a simplification 
that may not capture all nuances in the data but allows for generalizability to make 
predictions based on new data. 

●​ Temporal Consistency: The model assumes that the relationship between 
population change and outcomes remains consistent over the 2000-2020 period, 
which may not account for structural changes or shifts in these relationships as 
time progresses. 
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3. Demographic Change 

3.1 Executive Summary 
This analysis examines the relationship between population change and shifts in 
sociodemographic characteristics across the contiguous U.S. from 2000 to 2020, aiming 
to understand how climate-induced migration may reshape community compositions in 
different geographic contexts. The study utilizes sociodemographic data from the U.S. 
Census Bureau at the tract level, reconciled to consistent geographic boundaries. Tracts 
were classified into Region-Urbanicity-Coastline (RUC) categories as outlined in Section 
2.1. Following the framework outlined in Section 2.2, the analysis employs bivariate 
generalized additive models (GAMs) to explore relationships between population change 
and individual sociodemographic variables for each Rural-Urban-Coastline (RUC) 
continuum. Additionally, partial least squares regression (PLSR) is used to evaluate the 
collective relationship between multiple sociodemographic variables and population 
change. This comprehensive approach allows for nuanced predictions about future 
community composition changes in response to climate-induced migration across diverse 
geographic contexts in the United States. 

3.2 Background 

A growing body of literature has emerged to investigate this phenomenon, in which a 
combination of exposure, vulnerability, and perceived risk associated with climate 
hazards has already driven, or is expected to drive, individuals and families to relocate 
within the U.S. (Hauer et al, 2016; Hauer et al, 2019; Robinson et al., 2020; Hauer et al, 
2021; Shu et al., 2023). Studies have found that climate migration often follows pathways 
similar to traditional migration factors, as climate impacts compound with existing 
socioeconomic drivers such as job opportunities, amenities, and affordability (Black et al., 
2011; Fan et al., 2016). Other studies suggest that the ability to relocate in response to 
environmental pressures is often contingent not only on socioeconomic status but also 
demographic factors (Fothergill et al., 2002; Fussell et al., 2009; Raker, 2020; Kaczan & 
Orgill-Meyer, 2020). Thus, it may be predicted that the impacts of climate change will 
create distinct migratory patterns that vary across sociodemographic groups, potentially 
reshaping the composition of the populations left behind in areas with escalating climate 
risk. However, the exact ways sociodemographics might shift with climate-induced 
population change are less studied.  

Recent studies suggest that population shifts driven by climate change may influence the 
future demographic composition of affected areas in various ways (Hauer, 2017; Hauer et  
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al., 2024; Best et al., 2023). For example, Hauer et al. (2024) found that climate migration 
could accelerate population aging in coastal areas vulnerable to flooding as younger 
populations migrate while older populations remain. Similarly, Best et al. (2023) have 
found that Black and Hispanic populations face a disproportionate risk of isolation from 
essential services in areas threatened by sea-level rise, indicating these groups might 
lack the resources or capabilities to move from affected areas. These findings underscore 
the complex interactions between climate change, migration, and sociodemographic 
factors, necessitating more comprehensive understandings of how climate-induced 
migration relates to various population characteristics. 

This section aims to explore the relationship between localized changes in population and 
shifting sociodemographics across the contiguous United States. To achieve this, we 
examine the historical relationships between population change and sociodemographic 
shifts over a 20-year time period (2000 to 2020) as proxies for anticipating the impacts of 
future climate migration on community profiles. Among the sociodemographic 
characteristics modeled, we examine demographic and socioeconomic attributes from US 
Census data including age, education, income, housing, race and ethnicity, and 
occupation. Bivariate generalized additive models (GAMs) are employed to flexibly trace 
how sociodemographics have historically moved with population growth or decline, which 
can serve as predictions for how community composition may continue to transform with 
future population change. These relationships are also explored in aggregate by 
employing a partial least squares regression (PLSR) to understand the general direction 
and magnitude of the relationship with population change when sociodemographics are 
examined collectively. Mobility and associated sociodemographic shifts are likely to vary 
across the United States, and depend on the local and geographic context, especially in 
the face of various climate-related insults. Therefore, our study evaluates these 
relationships within geographic context by defining a novel set of geographic categories 
along regional, urban, and coastal divides, characteristic of both the spatial 
characteristics of population dynamics and climate impacts across the contiguous U.S. 
Our approach to disaggregating relationships by geographic category leads to more 
accurate profiles of anticipated changes as population changes across areas of the U.S.      

3.3 Methodology 
Our main objective for this section was to evaluate the relationship between population 
change and shifts in community sociodemographics (Figure 3.1). These relationships 
were evaluated across the contiguous US from 2000 to 2020. Since these relationships 
likely vary by local context, influenced by regional, urban, and coastal trends, we 
evaluated these relationships separately by geographic context. 
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Figure 3.1 Illustration of this section’s objective to evaluate the relationship between local 
changes in population and sociodemographics using historical tract-level data from the 
U.S. Census Bureau from 2000 to 2020. Relationships evaluated separately in the context 
of region, urbanicity and coastal proximity.  

3.3.1 Data Selection and Sources 

We acquired a set of sociodemographic variables of interest from the U.S. Census 
Bureau, including total population, age, race and ethnicity, sex, income, poverty, 
education, employment, industry, occupation, housing occupancy and cost (including 
homeownership and rental costs), and measures of immigration. Table 3.1 lists the 
category of outcome variables included in this analysis and their descriptions. We 
matched variables from 2000 and 2020 that captured the same information over the two 
time periods, such as median age. Data was collected at the tract-level, the highest 
resolution available for all demographic variables. Count and percentage data were 
collected for the larger demographic subgroups (e.g., total population, race and ethnicity, 
age and sex), while percentage data was pulled for other socioeconomic variables.  

Table 3.1 Population and sociodemographic information for tracts across the contiguous 
U.S. in 2000 and 2020 from the U.S. Census Bureau.  
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Category  Description  

Population Total population count  

  

Sociodemographics  

Age  Median age, % Age categories (5- or 10-year intervals up to 85+) 

Sex  % Male, Female 



      

For comparability across the two decades, sociodemographic data for 2000 and 2020 
were reconciled to the geographic boundaries of 2010 tracts. A crosswalk delineating 
2000 to 2010 tracts was available from the Longitudinal Tract Database (LTDB). A 
tract-to-tract crosswalk for 2020 to 2010 was not available at the time of this effort; 
therefore we used a block group-to-tract crosswalk from the National Historical 
Geographic Information System (NHGIS). For count data, this required an additional step 
to disaggregate tract-level data to block groups. This process entailed computing a 
weight for the proportion of the total tract population within each block group. This weight 
was then applied to the tract-level count data to estimate counts for each block group. An 
example of this process is presented in Table 3.2. For percentages and medians, we 
assumed that the value was consistent across all blocks within the same tract.  

Table 3.2 Example of disaggregating tract-level count data into block groups.  

2020 tractid 2020 blockid pop_tract pop_block weight 
(pop_block/pop_tract) 

hispanic_tract hispanic_block 
(hispanic_tract*weight) 
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Race and ethnicity  % White, Black, Asian, Hispanic, Native American or Alaskan, Native 
Hawaiian or Pacific Islander, other, two or more   

Education % High School, Associate’s, College Graduate, Graduate/Terminal 
Professional Degree 

Income Median income (household), % Income categories (intervals 
defined by Census) 

Poverty % Poverty families and individuals 

Housing occupancy % Units occupied, Owner occupied, Renter occupied 

Housing cost Median rent, Median value of owner-occupied units ​
% Rent as a ratio of income (intervals defined by Census)  

Employment % Employed, Unemployed 

Industry  % Agriculture, Construction, Manufacturing, Wholesale, Retail, 
Transportation, Information, Finance, Professional/Administrative, 
Education/Health, Leisure, Public Admin 

Occupation % Professional (management, business, science, and arts 
occupations), % Labor (natural resources, construction, and 
maintenance occupations) 

Immigration % Foreign, % Low English proficiency  

https://s4.ad.brown.edu/Projects/Diversity/Researcher/LTDB.htm
https://www.nhgis.org/geographic-crosswalks


      

1001020400 10010204001 4246 942 0.2219 158 35 

1001020400 10010204002 4246 1902 0.4480 158 71 

1001020400 10010204003 4246 867 0.2042 158 32 

1001020400 0010204004 4246 535 0.1260 158 20 

pop_tract= total population within tract 

pop_block=total population within each block group 

weight=proportion of total tract population within each block group 

hispanic_tract=count of Hispanic population within tract 

hispanic_block=estimated Hispanic population within each block group  

Count data from the origin year (i.e., 2000 or 2020) was then reallocated to 2010 tracts by 
applying a population weight. In this case, population weight represents the proportion of 
the population in the origin unit (i.e., tract or block group) belonging to each 2010 tract. 
These reallocated counts were then aggregated for each 2010 tract. The formula below 
depicts the crosswalk procedure for 2000 to 2010 tracts.  

  (Equation 3.1) 𝑐𝑜𝑢𝑛𝑡
2010 𝑡𝑟𝑎𝑐𝑡

= Σ(𝑐𝑜𝑢𝑛𝑡
2000 𝑡𝑟𝑎𝑐𝑡

 ×  𝑝𝑜𝑝𝑤𝑒𝑖𝑔ℎ𝑡
2000 𝑡𝑟𝑎𝑐𝑡→2010 𝑡𝑟𝑎𝑐𝑡

) 

 Percentage and median data were crosswalked to 2010 tracts by computing a weighted 
mean. Population weight in this case is the proportion of the population in each 2010 tract 
that resides in each origin unit relation. Population weight was calculated using the 
estimated total population in each 2010 tract, computed from the formula above. 

         (Equation 3.2) 𝑝𝑒𝑟𝑐𝑒𝑛𝑡
2010 𝑡𝑟𝑎𝑐𝑡

=
Σ(𝑝𝑒𝑟𝑐𝑒𝑛𝑡

2000 𝑡𝑟𝑎𝑐𝑡
 × 𝑝𝑜𝑝𝑤𝑒𝑖𝑔ℎ𝑡

2010 𝑡𝑟𝑎𝑐𝑡→2000 𝑡𝑟𝑎𝑐𝑡
)

Σ(𝑝𝑜𝑝𝑤𝑒𝑖𝑔ℎ𝑡
2010 𝑡𝑟𝑎𝑐𝑡→2000 𝑡𝑟𝑎𝑐𝑡

)

 

Where  adds up to 1. Σ(𝑝𝑜𝑝𝑤𝑒𝑖𝑔ℎ𝑡
2010 𝑡𝑟𝑎𝑐𝑡→2000 𝑡𝑟𝑎𝑐𝑡

)

3.3.2 Statistical Analysis 

Estimates for Population and Sociodemographic Change 

After data from 2000 and 2020 were reconciled to comparable geographic units of 2010 
tracts, we could then directly compute changes in population and demographics over the 
past two decades.  
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Population change was expressed as a growth rate (%), indicating declines or increases 
from a “no change” scenario of 0, calculated as:  

     (Equation 3.3) 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 (%) =  100 𝑥 (
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2020
 − 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2000

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
2000

)

Changes in sociodemographic variables, either expressed as a percentage or median 
value (e.g., median age, median income), were computed using a straightforward 
difference from 2000 to 2020: 

  𝑆𝑜𝑐𝑖𝑜𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐(𝑖) 𝑐ℎ𝑎𝑛𝑔𝑒 =  𝑆𝑜𝑐𝑖𝑜𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐(𝑖)
2020

−  𝑆𝑜𝑐𝑖𝑜𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐(𝑖)
2000

(Equation 3.4) 

 

Where  is either expressed as a percentage or median value. 𝑖

Inclusion Criteria  

We included tracts with a total population between 200 and 15,000 people (70,945 of 
72,200 tracts; 98.3%). We also excluded outliers with a population growth of 6 times or 
greater (519 tracts; 0.5%). Our analysis included 70,426 tracts. Distribution of tracts 
across Region-Urbanicity-Coastline categories are shown in Table 3.3.           

Table 3.3 Distribution of tracts across Region-Urbanicity-Coastline categories included in 
our analysis (N=70,426). 

Region-Urbanicity-Coastline Tracts, n (%) 

West, Metro, Coast 6,371 (9.0%) 

West, Metro, Non-Coast 7,013 (10.0%) 

West, Non-Metro 1,529 (2.2%) 

Midwest, Metro 12,667 (18.0%) 

Midwest, Non-Metro 4,177 (5.9%) 
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Northeast, Metro, Coast 5,651 (8.0%) 

Northeast, Metro, Non-Coast 6,391 (9.1%) 

Northeast, Non-Metro 1,275 (1.8%) 

South, Metro, Coast 6,922 (9.8%) 

South, Metro, Non-Coast 13,530 (19.2%) 

South, Non-Metro 4,900 (7%) 

 

Bivariate Population-Sociodemographic Relationships 

In order to assess the relationships between population change and sociodemographic 
factors within a geographical context, such as regional variations, urbanicity differences, 
and coastal vs. non-coastal comparisons, the change metrics for sociodemographic 
outcomes and population at the tract level are delineated into the 11 RUC continuums as 
defined in Section 2.1. Subsequently, we evaluated the bivariate relationship between 
population change and each demographic variable of interest, separately by RUC 
classification, using GAMs. The parameters and assumptions employed when using GAMs 
are described in Section 2.2. From each fitted GAM, we derived predicted values of 
demographic change across the distribution of population change. Predicted 
sociodemographic values were centered to a reference point of no population change and 
plotted along with their 95% confidence intervals (95% CIs). This allows for a clear 
interpretation of the expected change in a sociodemographic characteristic for a given 
value of population decline or growth, relative to no growth. Almost all sociodemographic 
variables had less than 1% missing data; median rent and median value of 
owner-occupied units was missing about 2% of data.  

The model specification for each demographic variable (i) within each RUC classification 
(j) is as follows: 

     (Equation 3.5) 𝑆𝑜𝑐𝑖𝑜𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝐶ℎ𝑎𝑛𝑔𝑒 (𝑖, 𝑗) =  𝑓(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒(𝑗)) +  ε

where: 

●​  
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●​  

●​ Demographic(i,j) change is the change in the demographic variable i from 2000 to 
2020 in RUC classification j 

●​ f() represents a cubic spline smoothing function with a maximum of three knots 

●​ Population Growth Rate(j) is the population change from 2000 to 2020 in RUC 
classification j, expressed as a percentage  

●​ ε is the error term 

We found relationships between population change and sociodemographics were 
generally linear. For ease of interpretation, we also plotted coefficients from linear 
bivariate models using a heat map, to compare the magnitude and direction of the 
relationship between population change and groupings of sociodemographic variables, 
such as age categories, income brackets, and educational attainment levels, across the 
RUC continuum.  

Partial Least Squares Regression 

To validate our results and provide another way of estimating the magnitude of each 
sociodemographic variable to population, we evaluated the collective relationship 
between multiple sociodemographics and population change using a partial least squares 
regression (PLSR). PLSR is a statistical technique for dimension reduction, modeling the 
covariance structures between multiple sociodemographics, and the relationship with 
population change. Advantages of PLSR include: 1) the ability to handle collinearity 
between sociodemographics, that are likely to cluster together, and 2) being a supervised 
method that also considers how sociodemographics collectively relate to population 
change. Sociodemographics in our model include the difference (2020-2000) in median 
household income ($), % Bachelor’s degree or higher, median rent ($), median value of 
owner-occupied housing units ($), % housing units that are owner-occupied, % 
individuals below the poverty line, % Hispanic, % Black or African American, % Asian, % 
White, median age (years), % female, % employed, % in a professional occupation, % in a 
labor occupation, and % who speak limited English. Population change was included as 
the outcome. A correlation matrix of variables included in our analysis is presented in 
Figure 3.2. Similar to our bivariate models, we separately modeled tracts according to 
RUC classification. Sociodemographic variables were scaled before analysis. We focused 
on evaluating relationships within the first component, which explains the maximum 
variance in sociodemographics and the relationship with population change. The 
component includes a loading, or weight, that is estimated for each sociodemographic 
variable, indicating the magnitude and direction of the relationship with population 
change. Sociodemographics with a positive loading are associated with population 
growth, whereas variables with a negative loading are associated with population decline.  
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See Equation 1 for more details. 

The goal of PLSR is to create a latent variable that consists of a score for each tract, 
effectively capturing the relationship between collective sociodemographics and 
population change. These scores are derived from a linear combination of the predictors 
(sociodemographics) that maximize the covariance with the response variable (population 
change). As part of this process, a weight is computed for each sociodemographic 
variable, which is then used to compute the score of the latent variable. A loading can 
then be computed for each sociodemographic to determine its relative contribution to the 
composite score that captures the relationship with population change. The process is as 
follows:  

1.​ Compute the weight vector : (𝑤)

                                     (Equation 3.6) 𝑤 = arg 𝑎𝑟𝑔 𝐶𝑜𝑣  𝑋𝑤, 𝑌( )

​ ​ ​  

Where  is a matrix of predictors (sociodemographics) 𝑋

​ ​ ​ Where  is a single outcome, in this case, population change  𝑌

The latent variable is derived using the weight vector   to maximize the covariance with 𝑤
the response variable  𝑌

2.​ Compute the score Vector (   𝑡)

                                                           (Equation 3.7) 𝑡 = 𝑋𝑤

The score vector  represents the latent variable, a linear combination of the original 𝑡
predictors  that captures the most relevant information for predicting . 𝑋 𝑌

3.​ Compute the loadings  for each predictor in :  (𝑝) 𝑋

                                                         (Equation 3.8) 𝑝 = 𝑋𝑇𝑡

𝑡𝑇𝑡
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Figure 3.2. Spearman’s correlation between tract-level population and sociodemographic 
changes (2020-2000) included in our partial least squares regression (n tracts with 
complete information= 67,945).  

3.4 Results 

3.4.1 Bivariate Relationships 

The relationships between sociodemographic variables and population change modeled 
using GAMs revealed distinct patterns across both categories of variables and RUCs. 
Socioeconomic characteristics such as income and educational attainment showed 
consistently positive associations with population growth across RUCs, though the 
magnitude varied by category. Demographic factors such as age, sex, race, and ethnicity 
exhibited more varied patterns across different RUC designations. Select 
sociodemographic outcomes predicted in instances of 50% population growth or decline 
across RUCs are highlighted below. 
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Median household income showed a clear positive relationship with population growth 
across RUCs, with the weakest relationship observed in Northeast coastal areas (Figure 
3.3). For instance, in Northeast metro coastal areas with a 50% population increase, 

median household income rose by $3,680 (95% CI: $2,665, $4,695), compared to 
$10,062 (95% CI: $9,181, $10,944) in Northeast metro non-coastal areas. 

Figure 3.3 The relationship between population change and median household income for 
US census tracts from 2000 to 2020, analyzed separately across 
Region-Urbanicity-Coastline categories. Population change modeled using a cubic spline. 
X-axis is the population growth factor, where values below 0 indicate a population decline 
and values above 0 indicate population growth (e.g. 100 represents a 2-fold increase). 
Y-axis is the expected difference in median income in dollar form from 2000 to 2020 for a 
given value of population change, relative to no population change.   

Similarly, educational attainment increased with population growth across most RUCs, 
with the strongest relationships observed in Midwest and Southern non-metro areas 
(Figure 3.4). In Midwestern non-metro areas experiencing 50% population growth, the 
share of the population with a bachelor's degree increased by 3.16 percentage points 
(95% CI: 2.81%, 3.51%). This trend was even more pronounced in Southern non-metro 
areas, with a 3.87 percentage point increase (95% CI: 3.40%, 4.33%).  
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Figure 3.4. The relationship between population change and percent of the population 
with a bachelor degree for US census tracts from 2000 to 2020, analyzed separately 
across Region-Urbanicity-Coastline categories. Population change modeled using a cubic 
spline. X-axis is the population growth factor, where values below 0 indicate a population 
decline and values above 0 indicate population growth (e.g. 100 represents a 2-fold 
increase). Y-axis is the expected difference in percent of the population with a bachelor 
degree from 2000 to 2020 for a given value of population change, relative to no 
population change.   

Housing occupancy and rental costs showed mixed relationships across RUCs. The 
percentage of owner-occupied housing units generally decreased with population growth 
in metropolitan areas and increased in suburban areas (Figure 3.5). This contrast was 
particularly evident in Southern areas: South metro areas with 50% population growth 
experienced a 1.4 percentage point decrease (95% CI: -1.56%, -1.24%) in non-coastal 
areas and a 1.9 percentage point decrease (95% CI: -2.13%, -1.67%) in coastal areas in 
the share of owner-occupied housing. Conversely, non-metro areas of the South saw a 
0.56 percentage point increase (95% CI: 0.00%, 0.50%). 
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Figure 3.5. The relationship between population change and percent of residential 
properties that are owner-occupied for US census tracts from 2000 to 2020, analyzed 
separately across Region-Urbanicity-Coastline categories. Population change modeled 
using a cubic spline. X-axis is the population growth factor, where values below 0 indicate 
a population decline and values above 0 indicate population growth (e.g. 100 represents a 
2-fold increase). Y-axis is the expected difference in percent of residential properties that 
are owner-occupied from 2000 to 2020 for a given value of population change, relative to 
no population change.  

Median age showed a clear inverse relationship with population change across all RUCs 
(Figure 3.6). Tracts experiencing population decline showed an increase in median age, 
while those with population growth exhibited a decrease, at varying rates across regions, 
urbanicity, and coastal areas. In non-coastal metropolitan areas of the West that 
experienced a 50% population decline, the median age increased by 0.68 years (95% CI: 
0.46, 0.89), relative to no population change. This trend was more pronounced in coastal 
areas of the same region, with a median age increase of 2.56 years (95% CI: 2.23, 2.89). 

​​ 
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Figure 3.6. The relationship between population change and median age for US census 
tracts from 2000 to 2020, analyzed separately across Region-Urbanicity-Coastline 
categories. Population change modeled using a cubic spline. X-axis is the population 
growth factor, where values below 0 indicate a population decline and values above 0 
indicate population growth (e.g. 100 represents a 2-fold increase). Y-axis is the expected 
difference in median age from 2000 to 2020 for a given value of population change, 
relative to no population change.   

 

3.4.2 PLSR Relationships 

The PLSR analysis between sociodemographic variables and population change revealed 
patterns that largely corroborated the trends observed in the initial bivariate GAM 
analyses, while also highlighting some important distinctions. The loading chart for the 
importance of sociodemographic factors on population change is presented in Figure 3.7. 
For a closer look of how loadings for each sociodemographic characteristic compare 
across RUC classifications, see Figure 3.8.  

The PLSR loading charts expand upon the GAM results by providing a comprehensive 
view of the relationships between population change and multiple sociodemographic  
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factors simultaneously. While GAMs show individual bivariate relationships, PLSR 
analyzes all factors together, accounting for potential interactions. The loading charts 
visually represent the strength and direction of each factor's association with population 
change, allowing for easy comparison across variables. This approach helps identify 
which sociodemographic factors have the most significant impact on population 
dynamics when considered collectively, potentially revealing patterns not apparent when 
examining factors in isolation. Additionally, it highlights the relative importance of different 
factors across various geographic contexts. 

For example, socioeconomic factors emerged as the strongest predictors of population 
change. Median household income, median rent, median value of owner-occupied 
housing, and educational attainment consistently displayed the highest positive loadings 
across RUC categories, reinforcing their robust positive association with population 
growth observed in the GAM models. Some new insights were gleaned from the strength 
of each characteristic’s impact on population growth, as signaled by its loading score. For 
example, in Northeast metropolitan coastlines, educational attainment emerged as the 
strongest predictor among all sociodemographic factors, a distinction not apparent in the 
GAM results. We observed a consistently negative association between poverty rates and 
population change for all RUCs, except West and South metro coastal areas. 
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Figure 3.7. Results from the partial least squares (PLS) regression showing the 
relationship between changes in sociodemographics on population change, separately by 
Region-Urbanicity-Coastline categories.  Among 67,945 Census tracts with complete 
information (96% of 70,426 total tracts). A loading, or weight, is shown for each 
sociodemographic variable, indicating the magnitude and direction of the relationship with 
population. Variables with a positive loading are associated with increases in population 
(right-hand side of plots), whereas variables with a negative loading are associated with 
decreases in population (left-hand side of plots).  
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Figure 3.8. Results from the partial least squares (PLS) regression showing the 
relationship between collective changes in sociodemographics and population change, 
separately by Region-Urbanicity-Coastline (RUC) categories. Ordered by 
sociodemographic variable to more easily compare across RUC categories. Among 
67,945 Census tracts with complete information (96% of 70,426 total tracts). A loading, or 
weight, is shown for each sociodemographic variable, indicating the magnitude and 
direction of the relationship with population change. Variables with a positive loading are 
positively associated with population change (right-hand side of plots), whereas variables 
with a negative loading are negatively associated with population change (left-hand side 
of plots).  
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4. Economic Implications 
4.1 Executive Summary 
This analysis investigates the economic implications of climate migration, specifically on 
economic indicators employed by financial institutions, including Gross Domestic Product 
(GDP), Housing Price Index (HPI), and Debt-to-Income (DTI) ratio across the contiguous 
U.S. The purpose of this analysis is to estimate the economic impacts of shifting 
populations used by banks and other financial institutions when making decisions about 
the housing market and tie those impacts to the indirect effects of climate exposure via 
combined climate model outputs. The methodology integrates estimates from various 
federal sources to create separate models for each economic-population relationship that 
employs bivariate modeling techniques. The relationships are analyzed along 
Rural-Urban-Coastline (RUC) boundaries to investigate variations across regional, 
urbanicity, and coastal parts of the U.S. Key findings reveal generally positive 
relationships between changes in population and GDP and HPI and a negative relationship 
between changes in population and DTI, with varying sensitivities across the economic 
variables of interest and RUCs. 

4.2 Background 
Climate migration within the U.S. could have significant impacts on economic indicators in 
areas affected by such population dynamics. As populations shift domestically, patterns 
of economic activity, housing demand, and financial behaviors change, potentially 
affecting GDP, housing prices, and debt levels. These perceived indirect impacts of 
population change are supported by several economic theories on the intersection of 
population characteristics and economic outcomes. Specifically, Neoclassical Growth 
Theory, developed by Solow and Swan (1956), suggests that economic growth is driven in 
part by changes in the labor force which in turn could shift as populations grow or 
decline. Similarly, Urban Economics and Amenity Theory developed by Roback (1982) and 
Glaser et al. (2001) explains how the attractiveness of a location, based on its amenities 
and economic conditions, affects migration to an area as well as housing prices in that 
area. Lastly, Life Cycle Theory of Consumption and Saving proposed by Modigliana and 
Brumberg (1954) suggests that individuals make consumption and saving decisions based 
on their expected lifetime income, meaning borrowing decisions vary depending on a 
person’s age or life-stage, which in turn could impact aggregate debt-to-income ratios in 
areas as migration shifts age structures (as shown by the results of our Demographic 
Change model in Section 3.4.1. 
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These patterns have been observed in literature. For example, Bell and Charles-Edwards 
(2014) find that GDP per capita is strongly correlated with both short-term and medium 
term migration intensities across a several developed and developing countries, including 
the U.S. In the housing market, several studies have demonstrated that immigration into 
the US is associated with increased housing prices, i.e., HPI (Xu, 2020; Mussa et al., 2017; 
Saiz, 2007). Studies assessing the associations between internal migration and housing 
prices are less available in the U.S., but studies from other countries have suggested 
similar positive associations (Erol and Unal, 2022). Regarding debt, research by Fulford 
and Schuh (2015) shows that credit and debt levels change over the life cycle and with 
local economic conditions, which could be influenced by migration patterns. Similarly, 
Demyank et al. (2017) demonstrate that existing debt levels and access to credit affect 
internal migration decisions, which in turn could impact debt levels of areas with high or 
low levels of migration. Furthermore, Fan et al. (2018) apply a spatial equilibrium model to 
examine the economic impacts of sea-level rise-induced migration at the county level in 
the U.S., finding significant effects on wages, housing prices, and local GDP in both origin 
and destination counties. 

4.3 Methodology for GDP 

4.3.1 Data Inputs 

Data on county-level Gross Domestic Product (GDP) were obtained from the U.S. Bureau 
of Economic Analysis (BEA) regional accounts, specifically from the CAGDP9 dataset. 
This dataset provides annual GDP estimates for all counties in the U.S., broken down by 
major industry sectors according to the North American Industry Classification System 
(NAICS). 

The data collected covers the period from 2001 to 2019, offering a near 20-year span for 
analysis. GDP figures are reported in thousands of chained 2012 dollars, providing 
inflation-adjusted values for accurate comparison over time. Table 4.1 presents a 
breakdown of all NAICS sectors included in the analysis, including all sectors in 
aggregate. 

To smooth out short-term fluctuations and test relationships at different levels of 
smoothing, multi-year averages were calculated. These included 3-year and 5-year 
averages at the start of the period (2001-2003 and 2001-2005 respectively) and at the 
end of the period (2017-2019 and 2015-2019 respectively). Single year data, including 
2001 and 2019 were also kept. While data was available for the years 2020 to 2021, they 
were omitted in order to avoid capturing any irregularities caused by the COVID-19 
pandemic.  
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Table 4.1 NAICS Sectors Included in GDP Modeling. 

Sector Name NAICS Code 

All sectors 00 

Agriculture, Forestry, Fishing and Hunting 11 

Utilities 22 

Construction 23 

Manufacturing 31-33 

Wholesale Trade 42 

Retail Trade 44-45 

Transportation and Warehousing 48-49 

Information 51 

Finance and Insurance 52 

Real Estate and Rental and Leasing 53 

Professional, Scientific, and Technical 
Services 

54 

Management of Companies and 
Enterprises 

55 

Administrative and Support and Waste 
Management and Remediation Services 

56 

Educational Services 61 
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Health Care and Social Assistance 62 

Arts, Entertainment, and Recreation 71 

Accommodation and Food Services 72 

Other Services (except Public 
Administration) 

81 

 

Population data for years 2000 and 2020 were collected and reconciled to comparable 
geographic units of 2010 tracts as discussed in the demographic change Section 3.3.1. 
Historical data on population change estimates over those 20 years were integrated 
directly from data generated for the demographic change model, as described in Section 
3.3.2. Historical population data at the tract level was merged with the GDP data at the 
county level on county FIPS code, thereby expanding GDP estimates for counties to fill all 
rows in corresponding tracts.  

4.3.2 Statistical Analysis 

Estimating GDP and Population Change 

To quantify economic growth and change over time, several change metrics were 
calculated. A one-year change metric was computed by comparing GDP values from 2001 
to 2019 using the formula 

                      (Equation 4.1) 𝐺𝐷𝑃 𝐶ℎ𝑎𝑛𝑔𝑒
1−𝑦𝑒𝑎𝑟

 =  
𝐺𝐷𝑃

2019
 − 𝐺𝐷𝑃

2001

 𝐺𝐷𝑃
2001

A three-year average change metric was derived using the formula  

                (Equation 4.2) 𝐺𝐷𝑃 𝐶ℎ𝑎𝑛𝑔𝑒
3−𝑦𝑒𝑎𝑟

 =  
𝐺𝐷𝑃

2017−2019 
 − 𝐺𝐷𝑃

2001−2003

 𝐺𝐷𝑃
2001−2003

Similarly, a five-year average change was calculated as  

     (Equation 4.3) 𝐺𝐷𝑃 𝐶ℎ𝑎𝑛𝑔𝑒
5−𝑦𝑒𝑎𝑟

 =  
𝐺𝐷𝑃

2015−2019
 − 𝐺𝐷𝑃

2001−2005

 𝐺𝐷𝑃
2001−2005

                    

These change metrics were calculated for each county and each NAICS sector.  

Consistent with the methods used in the demographic change analysis, population 
change is then expressed as a growth factor where:  
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    (Equation 4.4) 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐺𝑟𝑜𝑤𝑡ℎ 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐶ℎ𝑎𝑛𝑔𝑒) =  (
𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2020
 − 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2000

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
2000

)

Values below 0 indicate a decline in population and values above 0 indicate an increase in 
population. 

Test regressions were run between population change and the three different GDP 
change estimates using single year, three-year, and five-year smoothing to determine 
goodness-of-fit based on variance explained. Ultimately, the three-year smoothed GDP 
change estimates were chosen due to their higher R-squared value compared to the other 
two variables’ relationships with population change. 

Inclusion Criteria  

Input data into the model was filtered to the 98% confidence range for 3-year smoothed 
GDP change, excluding the top and bottom 1% of GDP change observations. This filtering 
excluded 1,866 counties (2.6% of all counties in the data). This resulted in less error in the 
modeling results and tighter confidence bounds. 

Bivariate Modeling 

Change metrics of county GDP and population at the tract level were delineated into the 11 
RUC continuums as defined in Section 2.1 in order to explore regional variations, 
urbanicity differences, and coastal vs. non-coastal comparisons. Similar to proceeding 
sections, bivariate GAMs are employed to evaluate the impact of growth factors in 
population on county GDP for each sector interacted by each of the RUCs. The 
parameters and assumptions employed when using GAMs are described in Section 2.2. 
From each fitted GAM, we derived predicted values of sectoral county GDP change 
across the distribution of population change. Predicted county GDP change values were 
centered to a reference point of no population change and plotted along with their 95% 
confidence intervals. The resulting predictions produce conversion tables that translate 
changes in population into changes in county GDP for each sector and RUC. 

4.4 Methodology for DTI 

4.4.1 Data Inputs 

Data on Debt-to-Income (DTI) ratios were obtained from the Home Mortgage Disclosure 
Act (HMDA) dataset, which is maintained by the Consumer Financial Protection Bureau 
(CFPB). This dataset provides loan-level information on mortgage applications and 
originations across the U.S., including borrower characteristics and DTI ratios. The HMDA 
data covers a wide range of financial institutions and offers insights into lending patterns 
and borrower financial profiles at various geographic levels, including census tracts,  
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counties, and metropolitan statistical areas. Specifically, DTI ratios reflect the proportion 
of a mortgage applicant's monthly income that goes towards paying debts, providing 
insight into the applicant's ability to manage additional mortgage payments. 

HMDA Loan/Application Register (LAR) data for 2018 and 2022 was used to collect 
census tract-level DTI estimates. Initial data preparation involved filtering and cleaning to 
refine and structure the HMDA dataset across both years. Data was filtered to focus 
exclusively on home purchase loans by selecting only those entries where the loan 
purpose was home purchase (code 1). From these filtered datasets, only the census tract 
identifier and DTI ratio fields were retained for further analysis. 

The DTI data then underwent a cleaning process to standardize the values and prepare 
them for statistical analysis. Entries marked as "Exempt" were removed from the dataset 
to ensure all remaining data points were comparable. The DTI values, originally recorded 
in categorical ranges, were converted to numerical estimates. For instance, the "<20%" 
category was assigned a value of 15, "20%-<30%" was assigned 25, "30%-<36%" was 
assigned 33, "50%-60%" was assigned 55, and ">60%" was assigned a value of 65. 

In order to assess the relationship between DTI and population, historical data on 
population change at the tract level from 2000 to 2020 were integrated directly from data 
generated for the demographic change model, as described in Section 3.3.2. Historical 
population data and DTI data were merged on each census tract to produce the final input 
data for modeling. The final input data was structured similarly to that of proceeding 
analyses–each row in the data frame represented a tract, with DTI change and population 
change as columns.  

4.4.2 Statistical Analysis 

Estimating DTI change 

To quantify DTI growth and change over time, a change metric was computed by 
comparing DTI values from 2018 to 2022 using the formula 

                            (Equation 4.5) 𝐷𝑇𝐼 𝐶ℎ𝑎𝑛𝑔𝑒  =  
𝐷𝑇𝐼

2022
 − 𝐷𝑇𝐼

2018

 𝐷𝑇𝐼
2018

Inclusion Criteria  

Input data into the model was filtered to the 98% confidence range for DTI change, 
excluding the top and bottom 1% of DTI change observations. This filtering excluded 958 
tracts (2.0% of all census tracts in the data). This resulted in less error in the modeling 
results and tighter confidence bounds. 
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Bivariate Modeling 

Change metrics of DTI and population at the tract level were delineated into the 11 RUC 
continuums as defined in Section 2.1 in order to explore regional variations, urbanicity 
differences, and coastal vs. non-coastal comparisons. Different from other analyses, the 
relationships between population change and DTI change was derived using linear 
regressions to better capture the direction of the associations between these factors to 
produce generalizable estimates. GAM models were tested using a similar approach as 
described in Section 2.2, but the results overfit the historical data, limiting the predictive 
power of the models. The linear regressions were run by RUC to create RUC-specific 
estimates of how trends in population change are associated with DTI change within 
regional, urban, and coastal bounds. From each fitted linear regression, we derived 
predicted values of DTI change across the distribution of population change for each 
RUC. Predicted DTI change values were centered to a reference point of no population 
change and plotted along with their 95% confidence intervals (95% CIs).  The resulting 
predictions produce conversion tables that translate changes in population into changes 
in DTI for each RUC. 

4.5 Methodology for HPI 

4.5.1 Data Inputs 

Data on Housing Price Index (HPI) were obtained from the Federal Housing Finance 
Agency (FHFA), which maintains a comprehensive database of home price trends across 
the U.S. The FHFA HPI is a broad measure of the movement of single-family house prices, 
calculated using repeat sales and refinancings of the same properties. The index, which is 
based on transactions involving conforming, conventional mortgages purchased or 
securitized by Fannie Mae or Freddie Mac, offers insights into home price fluctuations and 
appreciation rates across different regions and time periods. 

Raw data on HPI was collected from the FHFA at a quarterly frequency for the years 2000 
and 2020 for 3-digit ZIP codes. A 3-digit ZIP code refers to the first three digits of a full 
5-digit ZIP code. These first three digits designate a sectional center facility (SCF) or a 
central mail processing facility within a larger geographical region. As the data was 
quarterly, annual averages were developed to produce single estimates for each year and 
ZIP code. A crosswalk from 3-digit ZIP codes to 2010 census tracts was then used to be 
able to merge in data on population change and RUC designations. Historical data on 
population change at the tract level over those 20 years were integrated directly from 
data generated for the demographic change model, as described in Section 3.3.2.  
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This data was aggregated up to the county level and merged with the HPI data to produce 
the final input data for modeling. 

Annual estimates of HPI were also standardized by dividing each HPI observation for each 
ZIP code HPI and each year by the average HPI for that year across all observations in 
order to smooth out any extreme values and possible mismatches from the crosswalk. For 
example, 2020 HPI estimates were standardized using the formula: 

                            (Equation 4.6) 𝐻𝑃𝐼 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑
𝑖
 =  

𝐻𝑃𝐼 2020
𝑖

 𝐻𝑃𝐼 2020 𝑎𝑣𝑔

 

Where,   represents HPI at each census tract. 𝑖

The final input data was structured similarly to that of proceeding analyses–each row in 
the data frame represented a tract, with HPI change and population change as columns. 

4.5.2 Statistical Analysis 

Estimating HPI Change 

To quantify HPI growth and change over time, a change metric was computed by 
comparing HPI values from 2000 to 2020 using the formula 

                            (Equation 4.7) 𝐻𝑃𝐼 𝐶ℎ𝑎𝑛𝑔𝑒  =  
𝐻𝑃𝐼

2020
 − 𝐻𝑃𝐼

2010

 𝐻𝑃𝐼
2010

Inclusion Criteria  

Input data into the model was filtered to the 98% confidence range for HPI change, 
excluding the top and bottom 1% of HPI change observations. This filtering excluded 
2,677 tracts (1.3% of all tracts in the data). This resulted in less error in the modeling 
results and tighter confidence bounds. 

Bivariate Modeling 

Change metrics of HPI and population at the county level were delineated into the 11 RUC 
continuums as defined in Section 2.1 in order to explore regional variations, urbanicity 
differences, and coastal vs. non-coastal comparisons. Similar to proceeding sections, 
bivariate GAMs are employed to evaluate the impact of growth factors in population on 
HPI interacted by each of the RUCs. The parameters and assumptions employed when 
using GAMs are described in Section 2.2. From each fitted GAM, we derived predicted  
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values of HPI change across the distribution of population change for each RUC. 
Predicted HPI change values were centered to a reference point of no population change 
and plotted along with their 95% confidence intervals (95% CIs). The resulting 
predictions produce conversion tables that translate changes in population into changes 
in HPI for each RUC. 

4.6 Results 

4.6.1 County GDP Results 

Results for county GDP varied across NAICS sectors (Figure 4.3). For example, county 
GDP for the agriculture sector saw largely negative relationships with population change 
across most RUCs, while the information sector saw mostly positive relationships. Overall, 
the relationship between population change and county GDP growth was positive when 
looking at aggregate GDP across all sectors, with non-metropolitan GDP showing more 
sensitivity to population growth. In the Northeast metro non-coastal areas experiencing 
50% population growth, county GDP rose by 8.4 percentage points (95% CI: 7.23%, 
9.67%). However, in Northeast non-metro areas with 50% population gain, county GDP 
rose by 20.75 percentage points (95% CI: 16.81%, 24.68%).  

 

Figure 4.3 The relationship between population change and county GDP for US counties 
from 2000 to 2020, analyzed separately across Region-Urbanicity-Coastline categories. 
Population change modeled using a cubic spline. X-axis is the population growth factor, 
where values below 0 indicate a population decline and values above 0 indicate 
population growth (e.g. 100 represents a 2-fold increase). Y-axis is the expected change  
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in county GDP from 2000 to 2020 for a given value of population change, relative to no 
population change.   

 

4.6.2 DTI Results 

Select results for DTI are presented here, specifically for metropolitan areas (Figure 4.4). 
Generally, the relationship between changes in population and changes in DTI across all 
RUCs showed negative trends. This suggests that in growing areas, incomes are rising 
faster than debt levels, possibly due to economic growth, improved job opportunities, and 
an influx of financially stable residents. The latter may also suggest selective migration 
among individuals or families in better financial standing. Such trends indicate that 
population growth is often associated with economic vitality and improved financial health 
for residents. However, Northeast metro coastal areas exhibit a divergent trend, with DTI 
increasing alongside population growth. This unique pattern could be attributed to the 
exceptionally high cost of living in these desirable locations, where housing prices and 
other expenses may be outpacing income growth. These contrasting trends highlight the 
complex interactions between population dynamics, economic factors, and geographic 
characteristics in shaping financial outcomes across different regions. 

 

Figure 4.4 The relationship between population change and HPI for U.S. tracts from 2000 
to 2020, analyzed separately across Region-Urbanicity-Coastline categories, for 
metropolitan areas specifically. Population change modeled using a cubic spline. X-axis is 
the population growth factor, where values below 0 indicate a population decline and 
values above 0 indicate population growth (e.g. 100 represents a 2-fold increase). Y-axis  
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is the expected change in DTI from 2000 to 2020 for a given value of population change, 
relative to no population change.   
 
 
4.6.2 HPI Results 

Results for HPI growth given population change were largely positive across RUCs, with 
non-metropolitan HPI showing more sensitivity to population growth (Figure 4.5). This 
suggests that while housing prices generally increase with population growth across all 
areas, non-metropolitan regions experience a more pronounced effect on housing prices 
even with smaller population increases. This heightened sensitivity in non-metro areas 
may be due to factors such as limited housing supply, less developed infrastructure to 
accommodate growth, or the relative scarcity of new residents compared to more 
populous urban areas. West non-metro areas showed some negative outcomes at high 
levels of population growth over 100%, but such levels of population growth are rarely 
expected from our combined model. In the West non-metro areas experiencing 50% 
population growth, HPI rose by 14.4 percentage points (95% CI: 8.75%, 19.99%). Moreso, 
in West non-coastal metro areas with 50% population gain, HPI rose by 19.88 percentage 
points (95% CI: 17.67%, 22.08%).  
 

 
Figure 4.5 The relationship between population change and HPI for U.S. counties from 
2000 to 2020, analyzed separately across Region-Urbanicity-Coastline categories. 
Population change modeled using a cubic spline. X-axis is the population growth factor, 
where values below 0 indicate a population decline and values above 0 indicate 
population growth (e.g. 100 represents a 2-fold increase). Y-axis is the expected change  
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in HPI from 2000 to 2020 for a given value of population change, relative to no population 
change.   
 

5. Commercial Implications 
5.1 Executive Summary 
This analysis investigates the commercial implications of climate-induced demographic 
shifts, focusing on the relationship between changes in sectoral labor force composition 
and business outcomes across the contiguous U.S. The purpose of this analysis is to 
estimate the market impacts of shifting populations and resulting demographics spurred 
by climate exposure, to paint a comprehensive picture of the indirect impacts of climate 
risk to communities. The study evaluates five key commercial metrics: employment 
counts, establishment counts, payroll, revenue, and costs across most major North 
American Industry Classification System (NAICS) sectors. The methodology integrates 
various business statistics from federal sources in aggregate, interpolating and 
downscaling data as necessary to create a comprehensive dataset. Statistical analysis 
employs bivariate Generalized Additive Models (GAMs) for each sector and 
Rural-Urban-Coastline (RUC) continuum, similar to previous studies, but using industry 
labor force as the explanatory variable rather than population change. Key findings reveal 
generally positive relationships between changes in industry labor force share and 
commercial outcomes, with varying sensitivities across different RUCs, sectors, and 
outcome types. 

5.2 Background 

Downstream impacts of climate-induced migration may come in the form of impacts to 
businesses and industries located in areas with population inflows or outflows and 
shifting demographic characteristics. As the composition of a community changes, so too 
may its consumption patterns, labor force characteristics, and entrepreneurial activities 
(Liang et al., 2018; Goetz et al., 2010; Aguiar & Hurst, 2013), impacting overall commercial 
viability, including employment, payroll, business revenue, and business expenses. This 
analysis aims to explore the dynamic between demographic shifts and commercial 
impacts by modeling the implications of climate change-induced sectoral labor force 
changes, or professional migration, on relevant commercial outcomes across sectors. 

Several studies have sought to explore the indirect impacts of climate migration on 
economic outcomes in the U.S. (Fan et al., 2018; Fan & Davlasheridze, 2019). These 
studies conclude that climate migration impacts the economic welfare of certain areas,  
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including changes in consumption patterns and wage rates. For instance, an influx of 
climate migrants from coastal areas to inland regions might alter local consumer demand 
and labor markets, while the loss of population in climate-vulnerable areas could lead to a 
shrinking tax base and reduced public services, potentially creating a feedback loop of 
further out-migration and economic decline (Hauer et al., 2019; Fan et al., 2018). Changes 
in age structure due to selective migration could affect local labor supplies and economic 
productivity differently across US regions (Maestas et al., 2016). Apart from 
climate-related impacts, evidence exists relating the impact of domestic professional 
migration within the U.S. on commercial viability. Several studies examine the impact of 
between-state migration on business dynamism or new business formation, finding 
associations between the migration of skilled workers and commercial activity (Baughn et 
al., 2012; Decker et al., 2016). Other studies assess trends in geographic mobility among 
professionals across sectors and differences across labor markets and occupation types 
(Choudhury, 2022; Reisinger, 2003, ​​Molloy & Smith, 2019).  

The findings from these studies suggest domestic migration may impact the commercial 
viability of an area, with differences existing across sectors. Findings from our 
demographic change analysis described above, further suggest that professional 
migration exists in the wake of population growth or decline. When coupled with 
climate-driven migration, climate conditions may dictate, to some extent, the flow of 
professional migration and thus commercial viability. Therefore, this analysis seeks to 
evaluate the historical relationship between climate-induced professional occupational 
migration and business outcomes, including employment counts, establishment counts, 
payroll, revenue and costs, across all major sectors and the contiguous U.S. (CONUS) 
from 2000 to 2020, using county-level Census data. Following a similar approach as was 
employed in the demographic change analysis, these relationships were evaluated along 
the Rural-Urban-Coastline (RUC) continuum to explore whether trends vary across 
geographic designations in the U.S. 

5.3 Methodology 

5.3.1 Data Inputs 

Data on aggregate business statistics at the county- and state-level in CONUS were 
pulled from the U.S. Census Bureau’s County Business Patterns (CBP) and Economic 
Census (ECN) as well as the U.S. Department of Agriculture’s (USDA) Agricultural Census. 
The CBP is an annual program that compiles population data from the Business Registrar 
of all U.S. employer businesses across all NAICS sectors. Data gathered from this dataset 
included employment figures, number of establishments, and annual payroll, by North 
American Industry Classification System (NAICS) 2-digit sector and county from 1999 to 
2021. Table 5.1 presents a breakdown of all NAICS sectors. Data on business revenue and  
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expenditures were gathered from the ECN for 2017 at the state level, the highest 
resolution available, for all sectors except the agricultural sector (NAICS 11). The ECN is a 
survey of roughly 4.2 million employer and nonemployer businesses conducted every five 
years (specifically in years ending in "2" and "7"). Revenue and expenditure data for the 
agricultural sector was pulled from the Agricultural Census for 2017 at the county-level. 
The Agricultural Census provides detailed information on agricultural businesses in the 
U.S. and is similarly conducted every five years along the same years as the ECN.  

Table 5.1 NAICS Sectors Included in Commercial Modeling. 

Sector Name NAICS Code 

Agriculture, Forestry, Fishing and Hunting 11 

Construction 23 

Manufacturing 31-33 

Wholesale Trade 42 

Retail Trade 44-45 

Transportation and Warehousing 48-49 

Information 51 

Finance and Insurance 52 

Professional, Scientific, and Technical 
Services 

54 

Administrative and Support and Waste 
Management and Remediation Services 

56 

Educational Services 61 

Health Care and Social Assistance 62 
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Arts, Entertainment, and Recreation 71 

Accommodation and Food Services 72 

Other Services (except Public 
Administration) 

81 

 

As data from the ECN and Agricultural Census was only pulled for 2017, macroeconomic 
indices from the Bureau of Labor Statistics (BLS) were extracted from the Major Sector 
Total Factor Productivity Metrics and used to interpolate a 20-year time series of business 
revenue and expenditures from 1999 to 2019 to link back to the CBP data. Specifically, an 
index of real sectoral output was used to proxy fluctuations in business revenue over 
time, and an index of total factor productivity was used to proxy trends in business 
expenditure. Both indices are normalized at the year 2017 (where 2017 = 100.0) and 
reflect national trends. Therefore, we assume these trends hold when being applied to 
state-level dynamics over the 20 years from from 1999 to 2019. Real sectoral output 
represents each sector's share of GDP for each year, thus illustrating the value of the 
goods and services it produced, making it an appropriate proxy for fluctuation in revenue. 
Total factor productivity is defined as the efficiency at which combined inputs, including 
labor, capital, energy, etc., are used to produce goods and services. Sectoral costs in 
these inputs are assumed to fluctuate along with their combined productivity at the 
national level. 

In order to assess the relationships in the model at a higher resolution, the state time 
series of ECN business revenue and expenditures were downscaled to the county-level 
(corresponding to the CBP data) by using a simple county-to-state proportion. 
County-level estimates of agricultural business revenue and expenditures were already 
available through the Agricultural Census. The aggregate county annual payroll relative to 
aggregate state annual payroll was used to proxy the distribution of business revenue and 
expenditure estimates from the state- to the county-level. The intuition behind this choice 
lies in the assumption that businesses with higher payrolls typically have more employees 
or higher-paid staff, indicating larger-scale operations and higher overall expenditures. 
This thought process is further bolstered by the fact that labor costs comprise the vast 
majority of business expenditures in most sectors (Paycor, 2022). Therefore, a county’s 
share of overall state annual payroll is assumed to adequately downscale and redistribute 
the aggregate totals for business revenue and expenditure. Further, this approach was 
validated against available ECN county-level data for certain sectors and the differences 
between the predicted and actual values for those counties were insignificant. Data for all 
sectors, variables and years were merged into one file used in further manipulation to 
prep the data for modeling.  
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Data related to business metrics were pulled from public sources and manipulated, as 
described above, and served as dependent outcomes in the model. The independent 
variables driving the change in business outcomes were derived from the demographic 
change model, which captured the change in industry share of an area’s labor force over 
the 20-year time period from 2000 to 2020 for each sector and at the tract-level. Data 
was merged at the county-level (the highest resolution at which business data was 
available) and expanded long to fill all the rows corresponding to tracts within that county. 
The RUCs described in Section 2.1 applied to the demographic change model were also 
merged in this process. The data was structured wide such that each row corresponded 
to a census tract and each column represented either a business outcome or sectoral 
labor share change.  

5.3.2 Statistical Analysis 

Estimating changes in commercial outcomes 

In order to translate shifts in industry population shares to impacts on business outcomes, 
“change” metrics, or growth factors over time, were calculated for each commercial 
variable, calculated in a similar fashion as the change metrics used in the demographic 
change model. Change in employment counts, establishment counts, payroll, revenue, 
and business expenditure were estimated using a 20-year change ratio from 1999 to 
2019, selecting years that wouldn’t capture the impact of economic shocks, particularly 
over the COVID-19 pandemic, which resulted in unusual business patterns. The following 
formula illustrates the growth factor estimated for commercial outcomes from 1999 to 
2019: 

 𝐶𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐶ℎ𝑎𝑛𝑔𝑒) =  (
𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝑜𝑢𝑡𝑐𝑜𝑚𝑒

2019
 − 𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝑜𝑢𝑡𝑐𝑜𝑚𝑒

1999

𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝑜𝑢𝑡𝑐𝑜𝑚𝑒
1999

) +  1

(Equation 5.1) 

Thus, for each county and sector, corresponding growth factors in employment, number 
of establishments, payroll, revenue, and expenditure were estimated over the period from 
1999 to 2019. When combined with the data inputs from the demographic change model 
at the census tract level, each sector-specific commercial outcome corresponded with a 
percentage point difference in industry share of an area’s labor force over a similar 
20-year period from from 2000 to 2020. 

𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝑙𝑎𝑏𝑜𝑟 𝑓𝑜𝑟𝑐𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 (𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒) =  𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝑆ℎ𝑎𝑟𝑒
2020

 −  𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝑆ℎ𝑎𝑟𝑒
2000

(Equation 5.2) 
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Bivariate modeling 

Change metrics of business outcomes and industry population shares at the tract level 
were delineated into the 11 RUC continuums defined in Section 2.1 in order to explore 
regional variations, urbanicity differences, and coastal vs. non-coastal comparisons. 
Similar to preceding sections, bivariate GAMs are employed to evaluate the impact of 
growth factors in industry shares of the labor force on each commercial outcome variable 
interacted by each of the RUCs. The parameters and assumptions employed when using 
GAMs are described in Section 2.2.  

Predictions about the outcome of commercial metrics from changes in industry share of 
the labor force are made using the fitted GAM model for each relationship. The values of 
industry labor share variables are expanded into a sequence of values within the 90% 
central range of each variable divided into 0.05 percentage point steps. The predicted 
commercial outcomes are mapped to each of the industry labor share values to estimate 
the predicted value of the outcomes along with their standard errors and resulting 95% 
confidence intervals. The resulting predictions produce conversion tables that translate 
percent changes in industry shares of the labor force into percent changes in commercial 
outcomes across revenue, expenditure, payroll, employment, and number of 
establishments for each sector and RUC.  

5.4 Results 
Results from the commercial implications model show that commercial outcomes and 
industry labor force generally share a positive relationship. While varying levels of 
sensitivity/magnitude to changes in the labor force exist across commercial outcomes in 
different RUCs, sectors, and outcome types, the average relationships across these 
variables are in a positive direction. This positive relationship is intuitive because a larger 
labor force often indicates growing demand for an industry's products or services. As 
more workers enter an industry, new businesses may form, leading to increases in 
establishments, employment, and revenue. We highlight some examples of the 
employment, expenditure and revenue curves for the Manufacturing industry (NAICS 
31-33) below to illustrate these positive relationships across Figures 5.2 - 5.4. 
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Figure 5.2 The relationship between share of the labor force represented by the 
manufacturing industry and the manufacturing industry’s employment levels for US 
counties from 2000 to 2020, analyzed separately across Region-Urbanicity-Coastline 
categories. Population change modeled using a cubic spline. X-axis is the growth factor in 
the share of the labor force represented by the manufacturing industry, where values 
below 0 indicate a population decline and values above 0 indicate population growth (e.g. 
100 represents a 2-fold increase). Y-axis is the expected change in the manufacturing 
industry’s employment levels from 2000 to 2020 for a given value of population change, 
relative to no population change.   
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Figure 5.3 The relationship between share of the labor force represented by the 
manufacturing industry and the manufacturing industry’s number of establishments for 
US counties from 2000 to 2020, analyzed separately across Region-Urbanicity-Coastline 
categories. Population change modeled using a cubic spline. X-axis is the growth factor in 
the share of the labor force represented by the manufacturing industry, where values 
below 0 indicate a population decline and values above 0 indicate population growth (e.g. 
100 represents a 2-fold increase). Y-axis is the expected change in the manufacturing 
industry’s number of establishments from 2000 to 2020 for a given value of population 
change, relative to no population change.   
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Figure 5.4 The relationship between share of the labor force represented by the 
manufacturing industry and the manufacturing industry’s revenue for US counties from 
2000 to 2020, analyzed separately across Region-Urbanicity-Coastline categories. 
Population change modeled using a cubic spline. X-axis is the growth factor in the share 
of the labor force represented by the manufacturing industry, where values below 0 
indicate a population decline and values above 0 indicate population growth (e.g. 100 
represents a 2-fold increase). Y-axis is the expected change in the manufacturing 
industry’s revenue from 2000 to 2020 for a given value of population change, relative to 
no population change.   
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6. Property Value Change 
6.1 Executive Summary 

This analysis examines the impact of climate-induced population changes and direct 
hazard exposure on property values and tax revenues across the contiguous United 
States. The study has three main components: 

1.​ Pre-Exposure Market Impacts: Investigates the relationship between historical 
population changes (2000-2020) and property value trends before climate hazard 
exposure using a generalized additive models (GAMs) applied within the 
Region-Urbanicity-Coastline (RUC) framework outlined in Section 2. This analysis 
provides insights into how population dynamics influence property markets across 
different geographic contexts. 

2.​ Post-Exposure Hazard Impacts: Evaluates the effects of specific climate hazards 
(flood, tropical cyclone wind, and wildfire) on property transaction values over time 
using difference-in-differences estimators. This component assesses both 
short-term and long-term impacts of hazard events on property values. 

3.​ Tax and Revenue Implications: Estimates potential changes in property tax 
revenues and overall local government finances resulting from flood-induced 
property value declines by applying elasticity of tax revenue to property sale 
prices. 

By integrating high-resolution climate hazard data from First Street’s models, property 
transaction records, historical population change estimates, and local government 
financial data, this methodology comprehensively assesses the implications climate 
change may have on property values and those implications on governments via tax 
revenue. 

6.2 Background 

Population changes have a significant impact on regional economic activity (Glaeser & 
Gottlieb, 2009; World Bank, 2020; Kline & Moretti, 2014). When the population in an area 
grows, it generally leads to an increase in demand for goods and services, which can 
stimulate economic activity and lead to job creation. This, in turn, can lead to further 
population growth as more people are attracted to the area due to the availability of jobs. 
On the other hand, a decrease in the population can have the opposite effect. As the 
number of people in an area decreases, there may be less demand for goods and 
services, leading to a decrease in economic activity and job losses. This can create a  
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downward spiral, as the loss of jobs can lead to more people leaving the area, which can 
further decrease the population and economic activity. If a city is unable to attract and 
retain residents, it may struggle to support businesses and provide essential services, 
which can have negative consequences for the local economy and quality of life. Directly 
connected, a slowing population can lead to declining property values, which can affect 
the city's tax base and ability to fund important services. On the other hand, increased 
property values also serve to reduce population growth, as discussed in urban economics 
and spatial equilibrium theory. 

Property values are profoundly affected by various hazards such as flooding, tropical 
cyclone winds, and wildfires, each imparting unique and lasting consequences. Flooding, 
for example, can swiftly devalue properties in flood-prone areas due to the immediate risk 
and potential damage costs (Bin and Polasky, 2004). The financial burdens of repairs, 
elevated insurance premiums, and fears of recurrent damage deter potential buyers, 
resulting in decreased demand and depressed property prices (Crichton, 2008). Over 
time, repeated flooding events can stigmatize an area, prolonging the depreciation of 
property values amid negative media coverage and heightened public awareness 
(Tascón-González et.al, 2020). 

Windstorms, including hurricanes and tornadoes, also pose substantial risks to property 
values. Properties in storm-prone regions face immediate devaluation following 
significant wind damage, as reconstruction costs rise and insurance premiums escalate 
(Michel-Kerjan and Kunreuther, 2011). The long-term impact includes the perception of 
heightened risk, potentially diminishing property desirability and market appeal over time 
(Hauer, 2019). 

Similarly, wildfires can significantly impact property values, especially in fire-prone 
regions. Direct damage to properties from flames and smoke can lead to immediate 
declines in value due to repair costs and insurance implications (Nie, 2023). The enduring 
effects of fire risk can further erode property values as insurance premiums increase and 
market perception shifts, affecting broader real estate dynamics in these areas (O’Neill 
and Handmer, 2012). 

Policy responses to these hazards, such as stricter building codes and zoning regulations, 
aim to mitigate risks but can increase construction costs and reduce property market 
attractiveness (O’Neill and Handmer, 2012). Higher insurance premiums and limited 
access to insurance coverage also contribute to decreased property values and market 
stability in hazard-prone regions (Kousky, 2010; Michel-Kerjan & Kunreuther, 2011). 
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Beyond financial impacts, these hazards disrupt local economies, displace residents, and 
damage infrastructure, which collectively diminish community appeal and property values 
(Bagstad et al., 2007). This comprehensive view underscores the profound and 
multifaceted effects of flooding, windstorms, and wildfires on property markets and 
community resilience, highlighting the critical interplay between environmental risks, 
economic development, and urban planning strategies. 

6.3 Data Inputs 

We integrate data on historic flood, tropical cyclone winds, wildfire exposure, and 
population enumeration with a series of indicators related to demographic conditions. 
Historic hazard exposure was accounted for using tract-level data from the sources 
detailed in Lai et al. (2022), and from the NOAA Storm Events Database. By leveraging 
these sources, we are able to construct a foundation for assessing climate-related risks at 
a high resolution for the Contiguous United States, while accounting for neighborhood 
exposures and their impact on property transactions. 

The modeling procedures discussed below all took place at the property transaction level. 
However, it's essential to note that while certain data elements, such as historical flooding 
data, were aggregated at a higher level of geographic granularity, like the Census Tract, 
they were treated as "repeated measures" for all properties within the same higher-level 
unit. This approach ensures that the broader context of geographic regions and their 
historical flood exposure is considered when examining individual property transactions.  

Property transaction values and property characteristics over time are provided through 
proprietary data from Lightbox. Residential properties are investigated in this analysis 
through limits set on the property-associated land use IDs. For residential properties, only 
transactions for properties that meet certain criteria are used in the analysis. The 
International Residential Code (IRC), which is the most widely adopted residential building 
code in the US, requires that all homes have at least one room with 70 square feet of 
habitable space (IRC, 2021). Additionally, to reduce noise from outliers as well as potential 
data errors, an upper limit of 6,000 square feet was chosen to represent the maximum 
size of a single-family residential property. As such, and as property values are 
operationalized as transaction price by square foot, any property records with under 70 
square feet or over 6,000 square feet are removed from the sample. An additional limit for 
the number of units associated with a property is also added, with only properties kept 
that have 5 or fewer units reported.  

Further processing was dependent on whether the sample is being used for pre- or 
post-exposure analysis, this being described in the sections below.   

    FIRSTSTREET.ORG 



      

 

 

In order to understand the downstream implications of changing property values, local tax 
revenue data, including sources of that revenue, are provided through the US Census 
Bureau’s State and Local Government Finance Survey (U.S. Census Bureau, 2023). These 
data provide sub-housing market indicators of the proportion of all local revenue directly 
tied to property valuation. The data further allow for an understanding of the elasticity of 
tax revenues in their relationships to shifting property values, as described below. 

6.4 Pre-Exposure: Market Impacts on Property Values 

For the purposes of this modeling effort, the interest is the relationship between pre-flood 
exposure property transactions and historical population change from 2000-2020. This 
allows for a comprehensive understanding of the impact of population change on 
property values, underscoring the impact of an area's amenities and/or disamenities. 

6.4.1 Methods + Model 

In order to find property value change across the pre-exposure period, greater than 2 
transactions have had to occur at a unique property ID before any flood exposure in order 
to be included in the analysis. We also removed outlier $/sq.ft values by calculating the 1 
and 99th percentile values and only keeping transactions that fit this criteria. The range of 
the values include from $22.10 to $497.30. After property transactions (4,347,828 of 
them) were grouped by property IDs, and distributed into categories across the 
Region-Urbanicity-Coastline (RUC) continuum, as described later, the number of unique 
properties included are 1,941,614.  

6.4.2 Statistical Analysis 

Tracts were included meeting the specified property level conditions, where the square 
footage had to be greater than 70 square feet and under 6,000 square feet. An additional 
limit for the number of units associated with a property is also added, with only properties 
kept that have 5 or fewer units reported. The number of included tracts in this analysis are 
6,791, out of the total potential 72,200 tracts (or 9.4%). Distribution of tracts across 
Region-Urbanicity-Coastline categories are shown in Table 6.1.               

Table 6.1. Distribution of tracts (N=6,791) and properties (N=1,941,614) across 
Region-Urbanicity-Coastline categories included in our analysis. 

Region-Urbanicity-Coastline Tracts % of sample Properties % of sample 
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West, Metro, Coast     133 1.96 66620 3.43 

West, Metro, Not_Coast      437 6.43 196190 10.10 

West, Non-Metro, Combined         91 1.34 20849 1.07 

Midwest, Metro, Not_Coast    1516 22.3 402848 20.75 

Midwest, Non-Metro, Combined     396 5.83 58071 3 

Northeast, Metro, Coast     787 11.6 194498 10.02 

Northeast, Metro, Not_Coast     1263 18.6 328376 16.91 

Northeast, Non-Metro, Combined     260 3.83 43515 2.24 

South, Metro, Coast      513 7.55 233776 12.04 

South, Metro, Not_Coast   1112 16.4 349957 

 

18.02 

South, Non-metro, Combined      283 4.17 46914 2.42 

 

Transaction and Property Specific Ratios 

To gain a holistic understanding of a property’s value within a more granular area (tract) at 
the first transaction pre-exposure, a ratio is created such that: 
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                                     (Equation 6.1) 𝐹𝑇𝑅
𝑖,𝑦 

=  
𝑃𝑃𝑆𝐹

𝑖,𝑦

𝑃𝑃𝑆𝐹
𝑗,𝑦

Where:  

 𝐹𝑇𝑅
𝑖,𝑦 

:  𝐹𝑖𝑟𝑠𝑡 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝑎𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑦

 𝑃𝑃𝑆𝐹
𝑖,𝑦 

:  𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 𝑓𝑜𝑜𝑡 𝑎𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑦

 𝑃𝑃𝑆𝐹
𝑗,𝑦 

:  𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 𝑓𝑜𝑜𝑡 𝑎𝑡 𝑡𝑟𝑎𝑐𝑡 𝑗 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑦

 

This same ratio is created for the last transaction pre-exposure, such that: 

                                    (Equation 6.2) 𝐿𝑇𝑅
𝑖,𝑦 

=  
𝑃𝑃𝑆𝐹

𝑖,𝑦

𝑃𝑃𝑆𝐹
𝑗,𝑦

Where: 

 𝐿𝑇𝑅
𝑖,𝑦 

:  𝐿𝑎𝑠𝑡 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝑎𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑦

 𝑃𝑃𝑆𝐹
𝑖,𝑦 

:  𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 𝑓𝑜𝑜𝑡 𝑎𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑦

 𝑃𝑃𝑆𝐹
𝑗,𝑦 

:  𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑠𝑞𝑢𝑎𝑟𝑒 𝑓𝑜𝑜𝑡 𝑎𝑡 𝑡𝑟𝑎𝑐𝑡 𝑗 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑦

 

 

These two ratios are then used to calculate the relative percentage change in the 
transaction bounds at a property where,  

                    (Equation 6.2) 𝑅𝑎𝑡𝑖𝑜 𝐶ℎ𝑎𝑛𝑔𝑒 % =  
𝐿𝑇𝑅

𝑖,𝑦
− 𝐹𝑇𝑅

𝑖,𝑦

𝐹𝑇𝑅
𝑗,𝑦

×  100

 

 

Where: 

 𝐿𝑇𝑅
𝑖,𝑦 

:  𝐿𝑎𝑠𝑡 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝑎𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑦

 𝐹𝑇𝑅
𝑖,𝑦 

:  𝐹𝑖𝑟𝑠𝑡 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 𝑎𝑡 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖 𝑖𝑛 𝑦𝑒𝑎𝑟 𝑦
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This metric, the Normalized Percentage Change in Property Value Ratio, ultimately 
describes the relative change from the first to the last transaction, accounting for changes 
in the average price per square foot over time in a properties specific spatial area (tract), 
and the real dollar value change of the price per square foot sales price at a specific 
property. It considers the ratio of the real sales price per square foot to the average price 
per square foot at both the earliest and latest transaction dates. This percentage change 
in this ratio is then used as a proxy for actual percentage change in property value.  

Estimating Population Change  

Population data for years 2000 and 2020 were collected and reconciled to comparable 
geographic units of 2010 tracts as discussed in the demographic change Section 3.3.2.  

Consistent with the methods used in the demographic change analysis, population 
change is then expressed as a growth factor where:  

   (Equation 6.3) 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐺𝑟𝑜𝑤𝑡ℎ 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐶ℎ𝑎𝑛𝑔𝑒) =  (
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2020
 − 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2000

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
2000

)

Values below 0 indicate a decline in population and values above 0 indicate an increase in 
population.    

Bivariate Modeling 

Change metrics for property value and population at the tract level were delineated into 
the 11 RUC continuums as defined in Section 2.1 in order to explore regional variations, 
urbanicity differences, and coastal vs. non-coastal comparisons. Similar to proceeding 
sections, bivariate GAMs are employed to evaluate the impact of growth factors in 
population on property values interacted by each of the RUCs. The parameters and 
assumptions employed when using GAMs are described in Section 2.2. From each fitted 
GAM, we derived predicted values of HPI across the distribution of population change for 
each RUC. Predicted property value estimates were centered to a reference point of no 
population change and plotted along with their 95% confidence intervals (95% CIs).  The 
resulting predictions produce conversion tables that translate changes in population into 
changes in property value for each RUC.  
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6.4.3 Results 

 

 

Figure 6.1. The relationship between population change and percentage change in 
property value across US census tracts from 2000 to 2020, analyzed separately across 
Region-Urbanicity-Coastline categories. Population change is modeled using a cubic  
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spline. X-axis is the population growth factor, where values below 1 indicate a population 
decline (e.g., 0.5 represents a 50% decline) and values above 1 indicate population 
growth (e.g., 2 represents a 2-fold increase). Y-axis is the expected percentage 
difference in property value from 2000 to 2020 for a given value of population change, 
relative to no population change.   

We observed mainly positive relationships between population change and property value 
change from 2000 to 2020 (Figure 6.1). Tracts across the midwest and northeast had 
clear positive relationships, where population growth occurred so did the change in 
property value. For example, in the non-metro midwest areas that experienced a 50% 
population increase, the median property value increase was 12.7% (95%CI = 
9.33%,16.05%), relative to no population change. In the south, there is a slight divergence 
in trend between the coast and not-coast categories, with the coast being close to no 
change given any level of population change. In the west, the non-coastal region has a 
strong positive relationship with population change, whereas the coastal region has a 
tipping point in areas that have increased population at or above 175% growth with the 
median property value increase at .002% (95%CI = -4.21%, 4.22%), with a slight 
decrease with higher levels of population growth. 

Given the outputs from the Climate Migration Model that adjusts future SSP projections 
with their climate impact, within the confines of SSP2, the percentage change in property 
value is depicted in Figure 6.2. The overall property value change over the next 30 years 
can be projected to be in the -49.5% to 80.6% range. Since property value change was 
modeled at the RUC designation, the trends seen in Figure 6.2 are directly as a result of 
the trend associated with the RUC presented in Figure 6.1. In areas with a strong positive 
relationship between population change and property value, like that seen in the midwest, 
a larger expected population decline at the tract level will result in a decline in property 
values in the region, as shown in Figure 6.2.  
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Figure 6.2. Map of the contiguous U.S. colored by expected percentage change in 
property value over the 2025-2055 time period across SSP 2-4.5. 

6.5 Post-Exposure: Impact of Hazard Exposure on Property 
Values 
For the purposes of this modeling effort, the interest is the relationship between pre- and 
post- hazard exposure property transactions for flood, tropical cyclone wind, and wildfire 
exposed properties. We also account for within tract population growth or decline as a 
potential bias factor, which allows for a comprehensive understanding of the hazard’s 
impact on the trajectory of property values in these growth/decline communities once 
exposed. 

6.5.1 Methods + Model 

Pre-Exposure Migration. To assess how pre-exposure migration patterns impact the 
trajectory of property sale prices following a flood event, we begin by calculating the 
difference between the population counts in the 2010 and 2000 decennial censuses at 
the tract level. This calculation helps determine whether property transactions occur 
within census tracts experiencing population growth or decline. We then estimate 
separately equation (3) for properties located in growing and declining census tracts. 

Main Estimand. We aim to understand how past exposure to hazards affects property 
transactions over time.  In other words, we aim to estimate the average treatment effect  
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on the treated (ATT) of historic exposure on a property transaction, , valuation dynamics, 𝑖
, for cohort, , at event time , which is defined as: 𝑌 𝑔 𝑒 ≡ 𝑡 − 𝑔

 

ATT                    (Equation 6.4) 𝑔, 𝑒 ≡ 𝐸 [ 𝑌𝑖, 𝑡 + 𝑒 (𝑔) − 𝑌𝑖, 𝑡 + 𝑒 (×) | 𝐺𝑖 = 𝑔 ]

 

Where, , is the expected value operator, , is the observed outcome of 𝐸 [ •  ] 𝑌𝑖, 𝑡 + 𝑒 (𝑔)
interest for a treated property transaction, , located within a census tract impacted by a 𝑖
hazard event, during event time, .  is the observed outcome of interest for a 𝑒  𝑌𝑖, 𝑡 + 𝑒 (×)
control property transaction, . Note that ATT  identifies the average treatment effect on 𝑖 𝑔, 𝑒

the treated cohort, , at event time , and we are interested in the ATT across 𝑔 𝑒 ≡ 𝑡 − 𝑔
treated cohorts for a given event time, i.e., ATT , which we obtain as the weighted mean 𝑒

of each ATT : 𝑔, 𝑒

 

ATT    ATT                 Where:               (Equation 6.5)      𝑒 ≡
𝑔
∑ ϱ𝑔, 𝑒 𝑔, 𝑒 ϱ𝑔, 𝑒 ≡ 𝑖

∑ 1{ 𝐺
𝑖
=𝑔 }

𝑖
∑ 1{ 𝐺

𝑖
= −× }

 represents the number of properties in the cohort , whereas, , is 
𝑖

∑  1{𝐺
𝑖

= 𝑔} 𝑔
𝑖

∑  1{𝐺
𝑖

=−×}

the number of properties that received treatment at one point in time. Thus, when 
aggregating ATT  to ATT , estimates from cohorts with a higher number of treated units 𝑔, 𝑒 𝑒

will receive a higher weight. 

 

Estimator. To identify the ATT , we rely on Sun and Abraham's (2021) generalized 𝑒

difference-in-differences event study estimator, which has as a unit of observation the 
property transaction, , in the year, , taking the following empirical form: 𝑖 𝑡

 

ln(                    (Equation 6.6) 𝑌
𝑖𝑡

) = α
0

+
𝑔=0

𝐺

∑
𝑒=−7

12

∑ β
𝑔
𝑒𝐷

𝑖𝑡
𝑒 + λ

𝑖
+ θ

𝑡
+ 𝑒

𝑖𝑡
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Where  is the natural logarithm of outcome of the transaction, , in the year, .  𝑙𝑛(𝑌
𝑖𝑡

) 𝑖 𝑡

 Cohort   is an event study dummy that takes the value of 1 if the unit is, , 𝐷
𝑖𝑡
𝑒 = 1{𝑡 − 𝑖 = 𝑒} 𝑒

periods away from the treatment (i.e., being located within a census tract impacted by a 
flood event) and 0 otherwise. Period  is the baseline.  and  are property and 𝑒 =− 1 λ

𝑖
θ

𝑡

year/month fixed-effects, respectively. Property-level fixed effects control for all 
time-invariant characteristics of a property, whereas year/month fixed-effects control for 
year characteristics impacting the whole United States, such as economic shocks or 
consumer sentiment and for seasonal effects. Standard errors are clustered at the census 
tract level. To go from  to , we use the weight, , defined in equation (2) for event β

𝑔
𝑒 β𝑒 ϱ𝑔, 𝑒

time, .  The causal identifying assumption for ATT   is that outcomes within census 𝑒 β𝑒 =  𝑒

tracts impacted by a hazard would have continued along the same trajectory without 
exposure. To formally test this assumption, we jointly test the null hypothesis: 

. β−7 =... = β−2

 

6.5.2 Results 
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Figure 6.3. Flooding Events and Sale Prices per Square Feet: Percentage Change 
Relative to Period, One Year Prior to Exposure (-1). 

 

Event Years after 
Event 

Lower Bound 
(%) 

Median (%) Upper Bound 
(%) 

Flood 1 -3.3% -0.4% 2.5% 

Flood 5 -6.1% -3.4% -0.6% 

Flood 10 -18.6% -13.2% -7.8% 
 
Our analysis shows that following a flood event, properties within an impacted census 
tract sell at lower prices per square foot (Figure 6.3). The change in sale prices per 
square foot keeps decreasing as years pass. Five years after a flood event occurred, 
properties get sold at -3.4% less (95%CI: -6.1%, -0.6%) (p < .0001), relative to identical 
properties located within non-flooding census tracts, whereas, ten years after the 
flooding event occurred, the difference reaches -13.2% (95%CI: -18.6%, -7.8%) (p < 
.0001).  
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Figure 6.4. Tropical Cyclone Wind Events and Sale Prices per Square Feet: Percentage 
Change Relative to Period, One Year Prior to Exposure (-1). 
 

Event Years after 
Event 

Lower Bound 
(%) 

Median (%) Upper Bound 
(%) 

Wind 1 1.1% 2.7% 4.3% 

Wind 5 -7.4% -6.1% -4.8% 

Wind 10 -14.6% -13.0% -11.4% 
 
Our analysis shows that following a tropical cyclone wind event, properties within an 
impacted census tract sell at lower prices per square foot (Figure 6.4). Five years after a 
TC wind event occurred, properties get sold at -6.1% less (95%CI: -7.4%, -4.8%) (p < 
.0001), relative to identical properties located within non-wind impacted census tracts, 
whereas, ten years after the TC wind event occurred, the difference reaches -13% 
(95%CI: -14.6%, -11.4%) (p < .0001). 
 

 
Figure 6.5. Wildfire Events (in historically gaining communities) and Sale Prices per 
Square Feet: Percentage Change Relative to Period, One Year Prior to Exposure (-1). 
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Event Years after 
Event 

Lower Bound 
(%) 

Median (%) Upper Bound 
(%) 

Fire - Gain 1 -7.6% -2.5% 2.7% 

Fire - Gain 5 -3.3% 2.6% 8.5% 

Fire - Gain 10 6.1% 13.4% 20.7% 
 
Our analysis shows that following a wildfire event in areas that have historically gained 
population, properties are more resilient long-term and are sold at lower prices per square 
foot in the short-term (Figure 6.5). For example, one year after a wildfire, properties are 
sold at -2.5% less (95%CI: -7.6%, 2.7%), relative to identical properties in non-fire 
impacted census tracts. Although, in these historically growing communities, the 
amenities tend to overshadow some of the disamenities. Five years after a wildfire event 
occurred, properties get sold at 2.6% more (95%CI: -3.3%, 8.5%) (p < .0001), relative to 
identical properties located within non-wind impacted census tracts, whereas, ten years 
after the wildfire event occurred, the difference reaches 13.4% (95%CI: 6.1%, 20.7%) (p < 
.0001). 

 
Figure 6.6. Wildfire Events (in historically abandoned communities) and Sale Prices per 
Square Feet: Percentage Change Relative to Period, One Year Prior to Exposure (-1). 
 

Event Years after Lower Bound Median (%) Upper Bound 
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Event (%) (%) 

Fire - Loss 1 -26.8% -9.0% 8.8% 

Fire - Loss 5 -21.5% -11.4% -1.3% 

Fire - Loss 10 -26.7% -15.7% -4.6% 
 
Our analysis shows that following a wildfire event in areas that have historically lost 
population, properties are sold at lower prices per square foot over time (Figure 6.6). For 
example, one year after a wildfire, properties are sold at -9% less (95%CI: -26.8%, 8.8%), 
relative to identical properties in non-fire impacted census tracts. Five years after a 
wildfire event occurred, properties get sold at -11.4% less (95%CI: -21.5%, -1.3%) (p < 
.0001), relative to identical properties located within non-fire impacted census tracts, 
whereas, ten years after the wildfire event occurred, the difference reaches -15.7% 
(95%CI: -26.7%, -4.6%) (p < .0001). 
 

6.6 Tax and Revenue Implications of Housing Price Declines 
from Flood Exposure 
Flood events can also impact property taxes and, consequently, local revenues. When a 
region is hit by a flood, property values often experience a significant drop due to both 
the tangible damage to structures and the perceived risk of future flood events. This 
decrease in property values could lead to lower sale prices when these properties 
transact. As property tax assessments are typically based on properties' assessed value 
or sale price, municipalities may witness a substantial dip in their property tax collections 
post-flood. This revenue shortfall can pose challenges for local governments as they 
struggle to fund essential public services when the community's restoration and 
rebuilding demands peak. 

6.6.1 Methods + Model 

To evaluate the potential consequences of declining property values on property tax 
revenues following flood events, we operate under the assumption that either every 
property within a county is impacted by flooding or that there is a ripple effect on 
property values in a county due to properties affected by flooding. We then employ the 
following methodology to estimate the potential decrease in property tax revenues due to 
flooding events: 

1.​ As we lack access to an annual nationwide historical parcel tax assessments 
database, we depend on aggregated county-level historical data concerning tax ​
​
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​
collections and sale prices to estimate the elasticity of tax revenue in response to 
changes in sale prices, using the following empirical form: 

(Equation 6.7) 𝑙𝑛(𝑌
𝑠𝑡

) = α
0

+ ξ
𝑠
𝑙𝑛( 𝑋

𝑠𝑡
) + θ

𝑡
+ 𝑒

𝑠𝑡
                               

●​ Where,  and , are the natural logarithm of the mean sale price of 𝑙𝑛(𝑌
𝑠𝑡

) 𝑙𝑛( 𝑋
𝑠𝑡

)

residential properties and total property tax collection in state, , during year, , 𝑠 𝑡
respectively.   represents year fixed-effects. Standard errors are clustered at the θ

𝑡

county level. The coefficients of interest are, , which tells us the elasticity of ξ
𝑠

property tax revenue to sale price fluctuations for state, . Running separate 𝑠
regressions for each state provides flexible elasticity measures specific to each 
state, helping to account for differences in tax policies, property tax rates, and 
assessment practices. 

2.​ Using the estimated elasticity of tax revenue to sale prices,  , from equation (4) ξ
𝑔

and the impact of flood exposure on a property transaction, , from equation (3), β
𝑒
 

we estimate the potential downfall, , in annual property tax collection, , in 𝐷
𝐶

𝑃𝑇
𝑐

county, , from a flooding event as  . To better understand the 𝑐 𝐷
𝐶

= ξ
𝑠

· β
𝑒

· 𝑃𝑇
𝐶𝑡

 

relative impact of a decline in property taxes, we present the potential downfalls as 
percentage decreases of both total tax collections and total revenues. 

 

This is combined with the most current tax information from the U.S. Census’ Annual 
Survey of State and Local Government Finances where the property taxes, total taxes, 
and total revenues are inflation adjusted based on their given entry year. The output 
presents real property taxes, real total taxes, and real total revenues for each county, as 
well as a percentage change decrease value for property taxes, total taxes, and total 
revenues as a result of flood exposure.  

6.6.2 Results 

Property tax change is presented as a single value across the nation (-13%), where total 
taxes and revenues are dynamic based on the county in question but have a maximum 
effect of 13% (Figure 6.7 and 6.8) 
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Figure 6.7 Expected Percentage Change in Total Taxes as a result of flood exposure to 
CONUS counties.  

 

Figure 6.8 Expected Percentage Change in Total Revenues as a result of flood exposure 
to CONUS counties.  
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Appendix 
Appendix Table 1. List of Variable Outputs Across Macroeconomic Implications Models 

Variable 
Granularity of 
Outputs Unit of Outputs 

Climate Migration Model 

Flood Impact in Population block group count, % 

Wind Impact on Population block group count, % 

Smoke Impact on Population block group count, % 

Wildfire Impact on Population block group count, % 

Heatwave Impact on Population block group count, % 

Drought Impact on Population block group count, % 

Climate-Adjusted Future Population (SSP's 1-5) block group count, % 

Demographic Characteristics 

White Population Share block group % 

Black Population Share block group % 

Asian Population Share block group % 

Hispanic Population Share block group % 

"Other" Population Share block group % 

Share of Households Owner Occupied block group % 

Share of Households Renter Occupied block group % 

Share of Occupied Housing Units block group % 

Male Population Share block group % 

Female Population Share block group % 

Median Age block group number of years 

Population Share by Age Category (5-15 year intervals--min 5, max 85+) block group % 

Population Share with High School Diploma block group % 

Population Share with Associates Degree block group % 

Population Share with Bachelor's Degree block group % 

Population Share with Graduate/Terminal Degree block group % 

Unemployed Population Share block group % 

Labor Share in a Professional Occupation block group % 
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Labor Share in a Service Occupation block group % 

Labor Share in a Laborer Occupation block group % 

Labor Share in a Farm Occupation block group % 

Labor Share in a Transportation Occupation block group % 

Labor Share Working in the Agriculture Industry block group % 

Labor Share Working in the Construction Industry block group % 

Labor Share Working in the Manufacturing Industry block group % 

Labor Share Working in the Wholesale Industry block group % 

Labor Share Working in the Retail Industry block group % 

Labor Share Working in the Transportation Industry block group % 

Labor Share Working in the Information Industry block group % 

Labor Share Working in the Finance Industry block group % 

Labor Share Working in the Professional/Administrative Industry block group % 

Labor Share Working in the Education/Health Industry block group % 

Labor Share Working in the Leisure Industry block group % 

Labor Share Working in Other Industries (except Public Admin) block group % 

Labor Share Working in the Public Administration Industry block group % 

Median Household Income block group $ 

Median Family Income block group $ 

Population Share by Income Categories ($10k intervals--min $10k, max $200k) block group % 

Population Share in Poverty block group % 

Median Rent block group $ 

Gross Rent as a Percent of Household Income (5% intervals--15%-35%) block group % 

Population Share Born in the US block group % 

Population Share Where English in the Primary Language block group % 

Property Value Metrics 

Exposure Property Value Change (By Peril) county % 

Market Property Value Change county % 

Tax Revenue Metrics 

Total Taxes Collected county % 

Total Revenue county % 

Total Expenditures county % 

Economic Metrics 
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Debt-to-Income (DTI) ratio county % 

Housing Price Index (HPI) county % 

Gross Domestic Product (County total and by Sector) county % 

Commercial Viability 

Number of Employees (By Sector) county % 

Number of Establishments (By Sector) county % 

Annual Payroll (By Sector) county % 

Revenue (Receipts and Total Sales) (By Sector) county % 

Total Business Expenditures (By Sector) county % 
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